CONFEDERACIÓN HIDROGRÁFICA DEL EBRO

ESTUDIO ESTADÍSTICO DE DATOS FÍSICO-QUÍMICOS Y BIOLÓGICOS POR TIPOS DE MASAS DE AGUA DE LA CUENCA DEL EBRO

Julio-2010

Concha DURÁN (Confederación Hidrográfica del Ebro)

Pilar GARGALLO (Universidad de Zaragoza)

Cristina PINTOR (Confederación Hidrográfica del Ebro)

Manuel SALVADOR (Universidad de Zaragoza)

INDICE

RESUMEN	5
1. OBJETIVO DEL ESTUDIO	
2. PLANTEAMIENTO DEL PROBLEMA	
3. ANÁLISIS ESTADÍSTICO DE LOS PARÁMETROS BIOLÓGICOS	
3.1. ANÁLISIS ESTADÍSTICO DEL INDICADOR IBMWP	11
3.2 ANÁLISIS ESTADÍSTICO DEL INDICADOR IPS	17
3.3 CONSTRUCCIÓN DEL INDICADOR DE CALIDAD CONJUNTO	23
4. METODOLOGIA ESTADISTICA	25
5. DETERMINACIÓN DE LOS UMBRALES DE CALIDAD	28
5.1. UMBRALES DE CALIDAD PARA LOS INDICADORES GENERALES	
5.2. UMBRALES DE CALIDAD PARA LOS INDICADORES DE MATERIA	
ORGÁNICA	50
5.3. UMBRALES DE CALIDAD PARA LOS INDICADORES DE NUTRIENTES	57
6. CONCLUSIONES	92

RESUMEN

A partir de los datos biológicos y físico- químicos tomados entre los años 2002- 2008 se determinan estadísticamente los límites de algunos parámetros físico-químicos correspondientes al cambio de estado ecológico Bueno/ Moderado. Para ello se utilizan como referencia los límites establecidos según un indicador biológico conjunto formado por los índices IBMWP e IPS, estos índices son usados habitualmente en ríos para establecer el estado ecológico según los indicadores biológicos. El principal problema de los índices biológicos es el elevado coste que supone la toma de muestras y la determinación de los taxones hasta los niveles adecuados para cada índice, frente a la relativa sencillez de la toma de muestra de los parámetros físico químicos, por ello sería de gran utilidad determinar los umbrales físicoquímicos correspondientes al cambio de estado Bueno/Moderado según los indicadores biológicos. Como novedad en este trabajo se estudia la conveniencia de tener en cuenta las tipologías de las masas de agua establecidas según la IPH en la determinación de dichos umbrales.

1. OBJETIVO DEL ESTUDIO

En este trabajo se realiza una determinación estadística de los umbrales de algunos parámetros físico- químicos indicadores de la calidad ecológica de los ríos de la cuenca del Ebro. De esta forma se busca optimizar los procedimientos sistemáticos de determinación del estado ecológico de las masas de agua, basados habitualmente en el estudio de sus parámetros biológicos complementados con la información proporcionada por parámetros físico-químicos característicos (pH, conductividad, nutrientes, etc.) que suelen ser más fáciles de determinar.

La construcción de dichos umbrales se basa en el estudio de la relación de los parámetros físico-químicos del agua con sus parámetros biológicos a partir de la cual, se determinan los valores de los parámetros físico-químicos asociados a un estado determinado a partir de parámetros biológicos. A diferencia de estudios anteriores, sin embargo, el análisis se realiza teniendo en cuenta la tipología de la masa de agua la cual, al hacer más homogénea la información proporcionada por las muestras obtenidas, puede potencialmente aumentar la precisión de la estimación de los umbrales obtenidos mejorando, por tanto, los procedimientos sistemáticos de determinación del estado ecológico

El estudio de la relación existente entre los parámetros físico-químicos y los biológicos se realiza mediante la utilización de modelos de regresión logística estimados a partir de muestras de agua obtenidas en diferentes puntos de muestreo de la cuenca a lo largo del tiempo. En dichos modelos se toma como variable dependiente un indicador de la calidad del agua construido a partir de los parámetros biológicos IBMWP e IPS y que toma como umbrales los utilizados por la Confederación Hidrográfica del Ebro (CHE en adelante) teniendo en cuenta la tipología del río en el que se ha tomado la muestra. La determinación del modelo se realiza aplicando procedimientos de selección de variables con el fin de evitar la existencia de problemas de multicolinealidad que distorsionen la estimación de los parámetros del mismo. A partir de modelos estimados, y para un nivel de riesgo dado, se determinan, para cada tipología, los umbrales de calidad de los parámetros físico-químicos. Así mismo se evalúa el comportamiento del umbral empíricamente, comparándolo con los umbrales utilizados actualmente por la CHE así como con procedimientos que utilizarían un único umbral para todas las tipologías.

El informe se organiza de la siguiente manera:

- Sección 2: se describen las variables y los datos utilizados en el estudio
- Sección 3 se realiza un análisis estadístico exploratorio de los parámetros biológicos

- Sección 4 se expone la metodología estadística utilizada para la determinación de los umbrales
- Sección 5 se muestran los resultados obtenidos al aplicar dicha metodología.
- Sección 6 concluye exponiendo los resultados más relevantes así como las líneas de investigaciones futuras que el equipo pretende abordar en trabajos posteriores.

2. PLANTEAMIENTO DEL PROBLEMA

Los datos corresponden a la medición, en distintos puntos de la cuenca del Ebro, de diversos parámetros biológicos y físico-químicos en muestras tomadas en los ríos de dicha cuenca. Las observaciones se realizaron en el periodo de tiempo comprendido entre los años 2002 y 2008, con una frecuencia quincenal-mensual, en el caso de las variables físico-químicas, y anual en el caso de los indicadores de calidad biológicos, debido al mayor coste y grado de dificultad de la medición de éstos últimos. Los datos finalmente analizados corresponden a los valores medianos anuales de ambos tipos de parámetros siendo el número total de observaciones igual a 2.759. De dichas observaciones algunas debieron ser eliminadas por las siguientes razones:

- no se disponía de información sobre la tipología de la masa de agua (221 observaciones correspondientes a canales y embalses en su mayor parte),
- no se disponía de información de ninguno de los dos indicadores biológicos (741)
- todas las muestras estaban clasificadas en un estado superior al bueno, este es el caso de la tipología 111 (ríos de montaña silícea, 41 observaciones), este hecho hacía inviable estadísticamente el determinar un umbral de calidad (se necesitaría disponer de muestras de agua de baja calidad).

De esta forma la muestra quedó reducida a **1766 observaciones**. El **elevado porcentaje de datos ausentes** (29,20%) hace que los resultados obtenidos deban tomarse con las debidas precauciones y ponen de manifiesto la necesidad de mejorar el proceso de obtención de datos dado que, la mayor parte de los datos ausentes se concentran en los años 2004 (152 observaciones) y 2008 (134 observaciones), años en los que hay un menor número de muestras.

Tabla 2.1: Frecuencia de observaciones por año

Año	Frecuencia	Porcentaje
2002	166	9,4
2003	130	7,4
2004	219	12,4
2005	300	17,0
2006	321	18,2
2007	331	18,7
2008	299	16,9
Total	1766	100,0

En la Tabla 2.1 se muestra el número de observaciones por año, apreciándose que durante los años previos a 2005 dicho número fue significativamente menor.

Los indicadores biológicos considerados en el estudio fueron dos de los utilizados por la CHE para la determinación del estado ecológico en ríos y aparecen listados en la Tabla 2.2. En dicha tabla se muestran, además, los umbrales utilizados por la CHE, por tipología, para determinar si una masa de agua tipo río cumple los requisitos mínimos para ser declarada en buen estado ecológico, según los parámetros biológicos, de acuerdo con lo indicado en la Directiva Marco del Agua.

Tabla 2.2: Indicadores biológicos y umbrales de calidad biológicos entre los estados Bueno y Moderado utilizados en el estudio

Tipología	IBMWP	IPS (Distriction)	
18	(Macroinvertebrados)	(Diatomeas)	
109: Ríos mineralizados de baja montaña mediterránea	Estado inferior a Bueno: IBMWP≤94	Estado inferior a Bueno: IPS≤12.6	
112: Ríos de montaña mediterránea calcárea	Estado inferior a Bueno: IBMWP≤101	Estado inferior a Bueno: IPS≤11.9	
115:Ejes mediterráneos-continentales poco mineralizados	Estado inferior a Bueno: IBMWP≤101	Estado inferior a Bueno: IPS≤11.9	
116:Ejes mediterráneo-continentales mineralizados	Estado inferior a Bueno: IBMWP≤101	Estado inferior a Bueno: IPS≤11.9	
117:Grandes ejes en ambiente mediterráneo	Estado inferior a Bueno: IBMWP≤101	Estado inferior a Bueno: IPS≤11.9	
126:Ríos de montaña húmeda calcárea	Estado inferior a Bueno: IBMWP≤95	Estado inferior a Bueno: IPS≤12.2	
127:Ríos de alta montaña	Estado inferior a Bueno: IBMWP≤103	Estado inferior a Bueno: IPS≤13.1	

Los indicadores físico-químicos considerados en el estudio fueron nueve y aparecen listados en la Tabla 2.3. Más concretamente se han utilizado tres indicadores generales: pH (PH), conductividad (COND20) y oxígeno disuelto en concentración (O2), uno de materia orgánica: demanda química de oxígeno (DQO) y cinco indicadores de nutrientes: amonio (NH4), nitritos (NO2), nitratos (NO3), fosfatos (PO4) y fósforo total (P_TOT).

Tabla 2.3: Indicadores físico-químicos utilizados en el estudio

Tipo de indicador	Nombre	Significado
	PH	рН
Generales	COND20	Conductividad a 20°C (μS/cm)
	O2	Oxígeno disuelto (en concentración) (mg/L O2)
Materia orgánica	DQO	Demanda Química de Oxígeno (al dicromato) (mg/L O2)
	NH4	Amonio Total (mg/L NH4)
	NO2	Nitritos (mg/L NO2)
Nutrientes	NO3	Nitratos (mg/L NO3)
	PO4	Fosfatos (mg/L PO4)
	P_TOT	Fósforo Total (mg/L P)

Nuestro objetivo se concreta en establecer umbrales para cada uno de estos indicadores que permitan predecir el estado ecológico de una masa con la mayor fiabilidad posible a partir de estos parámetros, analizando si tener en cuenta la tipología del río de la que dicha muestra fue extraída mejora significativamente los resultados obtenidos frente a no tener en cuenta dicha información. Para tal fin se ha utilizado la metodología estadística que se describe en la sección 4. Previamente en la sección siguiente realizamos un estudio estadístico-descriptivo de los datos utilizados en el estudio.

En el presente estudio los términos "mala calidad" y "buena calidad" del agua se utilizan para referirse a "estado inferior a bueno" o "superior a bueno" de la masa de agua respectivamente, según el indicador al que se esté aludiendo en cada momento.

3. ANÁLISIS ESTADÍSTICO DE LOS PARÁMETROS BIOLÓGICOS

En esta sección se lleva a cabo un análisis estadístico del comportamiento de los indicadores biológicos considerados en el estudio, a saber IBMWP e IPS, según la tipología del río. Su finalidad es analizar si dicho comportamiento es lo suficientemente heterogéneo como para justificar un procedimiento de determinación de umbrales de calidad que tenga en cuenta la tipología del río.

El estudio se lleva a cabo tanto desde un punto de vista gráfico como numérico utilizando el paquete estadístico SPSS 15.0 como herramienta de cálculo.

3.1. ANÁLISIS ESTADÍSTICO DEL INDICADOR IBMWP

Se observa, en primer lugar, la existencia de un alto porcentaje de datos ausentes (36,5%, ver Tabla 3.1.1) en la muestra analizada consecuencia de que dicho indicador sólo se ha medido a partir del año 2004 debido a problemas presupuestarios. Por tipologías llama la atención el escaso tamaño muestral de la tipología 116 (16 observaciones válidas de 23 posibles) que es, junto con las tipologías 117 (55,4% de datos ausentes) y 115 (46%) las que mayores porcentajes de datos ausentes tienen superando, en todos los casos el 40% de las observaciones. Sin embargo, se decidió mantener dichas tipologías en el estudio al disponer de muestras de ambos tipos (contaminadas y no contaminadas). No obstante, en el caso de los ríos de tipología 116 y dado el escaso tamaño muestral disponible, los resultados que hacen referencia a esta tipología deben tomarse con precaución.

Tabla 3.1.1: Datos ausentes en el indicador IBMWP por tipologías

Tipología	Válidos		Pero	didos	Total	
Tipologia	Casos	Porcentaje	Casos	Porcentaje	Casos	Porcentaje
109	198	64,3%	110	35,7%	308	100,0%
112	313	68,2%	146	31,8%	459	100,0%
115	147	54,0%	125	46,0%	272	100,0%
116	16	69,6%	7	30,4%	23	100,0%
117	54	44,6%	67	55,4%	121	100,0%
126	267	65,1%	143	34,9%	410	100,0%
127	127	73,4%	46	26,6%	173	100,0%
Total	1122	63,5%	644	36,5%	1766	100,0%

En la Tabla 3.1.2 se muestran los valores de algunos estadísticos descriptivos de este indicador por tipologías. Así mismo, en las Figuras 3.1.1 a 3.1.3 se muestran, por tipologías, el diagrama de puntos, el diagrama de cajas y el diagrama de barras de error del 95% de confianza para la media del indicador IBMWP, respectivamente. Finalmente, en las Tablas 3.1.3 a 3.1.5

se presentan los resultados obtenidos al aplicar los contrastes de Kruskall-Wallis (Tabla 3.1.3), mediana (Tabla 3.1.4) y Mann-Whitney (Tabla 3.1.5) dos a dos utilizando, en este último caso, un nivel de significación del 5% y el procedimiento de Bonferroni para tener en cuenta la simultaneidad de los contrastes.

Tabla 3.1.2: Análisis estadístico-descriptivo del indicador IBMWP por tipologías

Tipología	Casos	Media	Mediana	Desv. típ.	Mínimo	Máximo	Asimetría	Curtosis
109	198	87,34	80,00	43,85	6,00	222,50	0,56	-0,12
112	313	124,47	118,00	51,27	8,00	288,50	0,55	0,02
115	147	94,26	91,00	41,57	12,00	210,50	0,21	-0,49
116	16	49,53	55,00	18,11	21,00	77,00	-0,15	-1,33
117	54	79,57	75,00	30,63	25,00	159,00	0,31	-0,42
126	267	148,94	149,00	54,49	10,00	317,00	0,08	0,12
127	127	145,15	143,00	34,78	10,00	241,00	-0,04	1,54
Total	1122	118,89	116,00	53,70	6,00	317,00	0,38	-0,09

Todos los contrastes rechazan la hipótesis de homogeneidad de comportamiento del indicador IBMWP por tipologías, observándose (ver Figura 3.1.3 y Tabla 3.1.5) que los niveles más bajos del indicador se dan en la tipología 116 con niveles medios por debajo de 50, seguida por las tipologías 115, 117 y 109 todas ellas con niveles medios de IBMWP por debajo de 100. Los ríos de tipología 112 ocupan niveles intermedios correspondiendo los más altos a las tipologías 126 y 127 cuyos niveles medios son superiores a 140.

Tabla 3.1.3: Contraste de Kruskall-Wallis de comparación del indicador IBMWP por tipologías

	Tipología						
Casos	198	313	147	16	54	267	127
Rango Promedio	366,23	591,80	413,78	121,63	307,21	739,81	750,91
Chi-cuadrado	292,19						_
gl	6						

Pvalor asintót.

0,0000

Página 12 de 95

Tabla 3.1.4: Contraste de la mediana de comparación del indicador IBMWP por tipologías

	Tipología						
	109	112	115	116	117	126	127
> Mediana	43	158	41	0	6	202	109
<= Mediana	155	155	106	16	48	65	18

N 1122
Mediana 116,00
Chi-cuadrado 276,28
gl 6
Pvalor 0,000
asintót.

Tabla 3.1.5: Resultados de los contrastes de Mann-Whitney aplicados dos a dos al indicador IBMWP por tipologías

Tipología	112	115	116	117	126	127
109	< +		>		<	<
112		> ++	>	>	<	<
115			>		<	<
116				<	<	<
117					<	<
126						

⁺ El nivel mediano del indicador IBMWP en los ríos de la tipología 109 es significativamente inferior al de los ríos de la tipología 112

⁺⁺ El nivel mediano del indicador IBMWP en los ríos de la tipología 112 es significativamente superior al de los ríos de la tipología 115

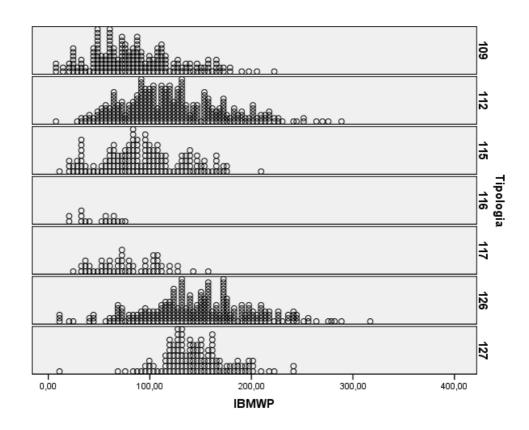


Figura 3.1.1: Diagrama de puntos del indicador IBMWP por tipologías

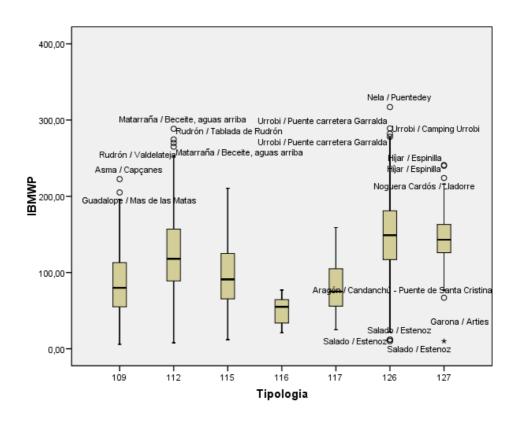


Figura 3.1.2: Diagrama de cajas del indicador IBMWP

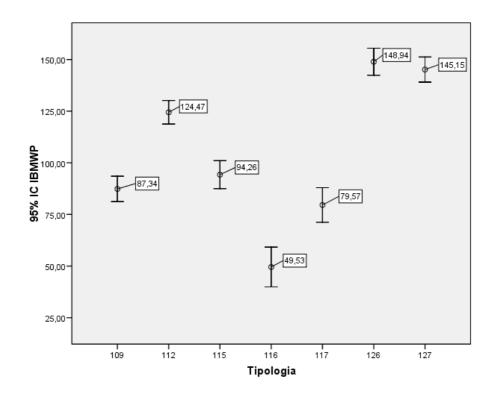


Figura 3.1.3: Barras de error del 95% del indicador IBMWP por tipologías (encuadrados los valores medios del indicador en cada tipología)

Finalmente en la Figura 3.1.4 y en la Tabla 3.1.6 se analiza la distribución de los niveles de calidad del agua tanto a nivel geográfico (Figura 3.1.4) como por tipologías (Tabla 3.1.6).

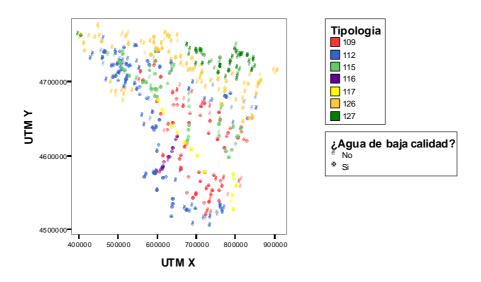


Figura 3.1.4: Distribución geográfica de los niveles de calidad biológica de las aguas a partir del indicador IBMWP tal y como se detalla en la Tabla 2.2

Se observa (ver Figura 3.1.4) que la mayor parte de los puntos de muestreo con calidad de agua alta se concentra en la zonas de montaña (norte y noroeste) de la cuenca que corresponden a las tipologías 126 y 127. Por el contrario, los puntos de muestreo situados a lo largo del cauce del río Ebro, pertenecientes a las tipologías 109, 115, 116 y 117, tienden a mostrar peores niveles de calidad. Este hecho queda puesto de manifiesto en la Tabla 3.1.6 en la que se muestran los porcentajes de muestras de agua contaminada y sin contaminar por tipología, así como los residuos tipificados de un contraste de la χ^2 cuadrado de independencia. Con respecto al indicador IBMWP, el nivel de calidad de las aguas es, en general bueno, al haber un 61,1% de puntos de muestreo con agua de buena calidad. Sin embargo dichas distribución no es uniforme siendo las tipologías anteriores las que muestran niveles de calidad muy inferiores con porcentajes de muestras de agua contaminada superiores al 60% en todos los casos destacando, en particular, los ríos de la tipología 116, en los que el 100% de las observaciones son de baja calidad.

Tabla 3.1.6: Nivel de calidad del agua por tipologías según el indicador IBMWP

			¿Agua de l	oaja calidad?	Total
			No	Si	No
		Recuento	75	123	198
	109	% de Tipología	37,9%	62,1%	100,0%
		Residuos tipificados	-4,2	5,3	
		Recuento	198	115	313
	112	% de Tipología	63,3%	36,7%	100,0%
		Residuos tipificados	,5	-,6	
		Recuento	58	89	147
	115	% de Tipología	39,5%	60,5%	100,0%
		Residuos tipificados	-3,4	4,2	
		Recuento	0	16	16
Tipología	116	% de Tipología	,0%	100,0%	100,0%
		Residuos tipificados	-3,1	3,9	
		Recuento	16	38	54
	117	% de Tipología	29,6%	70,4%	100,0%
		Residuos tipificados	-3,0	3,7	
		Recuento	225	42	267
	126	% de Tipología	84,3%	15,7%	100,0%
		Residuos tipificados	4,8	-6,1	
		Recuento	114	13	127
	127	% de Tipología	89,8%	10,2%	100,0%
		Residuos tipificados	4,1	-5,2	
	Total	Recuento	686	436	1122
	างเลา	% de Tipología	61,1%	38,9%	100,0%

3.2 ANÁLISIS ESTADÍSTICO DEL INDICADOR IPS

Se observa, en primer lugar, la existencia de un porcentaje moderado de datos ausentes (27,1%) (ver Tabla 3.2.1) que es consecuencia de la inexistencia de observaciones respecto a este indicador en el año 2004 debido a problemas presupuestarios. Por tipologías vuelve a llamar la atención, en primer lugar, el escaso tamaño muestral de la tipología 116 (15 observaciones de 23 posibles) que es, además, la que más datos ausentes tiene (34,8%) seguida de la tipología 109 con un 33,8%. Se decidió mantener, sin embargo, a dicha tipología en el estudio al disponer de muestras de ambos tipos (contaminadas y no contaminadas) aunque, dado el escaso tamaño muestral disponible, los resultados que hacen referencia a esta tipología deben tomarse con precaución.

Tabla 3.2.1: Datos ausentes en el indicador IPS por tipologías

Tipología	Vál	lidos	Pero	didos	Total		
Tipologia	Casos	Porcentaje	Casos	Porcentaje	Casos	Porcentaje	
109	204	66,2%	104	33,8%	308	100,0%	
112	322	70,2%	137	29,8%	459	100,0%	
115	205	75,4%	67	24,6%	272	100,0%	
116	15	65,2%	8	34,8%	23	100,0%	
117	93	76,9%	28	23,1%	121	100,0%	
126	308	75,1%	102	24,9%	410	100,0%	
127	140	80,9%	33	19,1%	173	100,0%	
Total	1287	72,9%	479	27,1%	1766	100,0%	

En la Tabla 3.2.2 se muestran los valores de algunos estadísticos descriptivos de este indicador por tipologías. Así mismo, en las Figuras 3.2.1 a 3.2.3 se muestran, respectivamente, el diagrama de puntos, el diagrama de cajas y el diagrama de barras de error para la media al 95% del indicador IPS por tipologías. Finalmente, en las Tablas 3.2.3 a 3.2.5 se presentan los resultados obtenidos al aplicar los contrastes de Kruskall-Wallis (Tabla 3.2.3), mediana (Tabla 3.2.4) y Mann-Whitney (Tabla 3.2.5) dos a dos utilizando, en este último caso, un nivel de significación del 5% y el procedimiento de Bonferroni para tener en cuenta la simultaneidad de los contrastes.

Tabla 3.2.2: Análisis estadístico-descriptivo del indicador IPS por tipologías

Tipología	Casos	Media	Mediana	Desv. típ.	Mínimo	Máximo	Asimetría	Curtosis
109	204	13,85	15,25	4,12	1,20	19,60	-1,12	0,53
112	322	15,26	16,00	3,27	1,30	19,80	-1,51	2,67
115	205	12,85	12,90	3,56	2,20	19,80	-0,34	-0,01
116	15	12,89	13,30	1,63	9,10	14,70	-1,17	1,07
117	93	9,63	10,10	2,94	1,90	16,40	-0,23	-0,24
126	308	17,01	17,60	2,62	4,20	20,00	-1,68	4,11
127	140	18,41	18,90	1,59	11,50	20,00	-2,21	5,59
Total	1287	14,98	15,90	3,91	1,20	20,00	-1,00	0,52

Todos los contrastes rechazan la hipótesis de homogeneidad de comportamiento del indicador IPS por tipologías, observándose (ver Figura 3.2.3 y Tabla 3.2.5) que los niveles más bajos del indicador se dan en la tipología 117 con niveles medios por debajo de 10, seguidos de los ríos de las tipologías 115, 116 y 109, todos ellos con niveles medios por debajo de 14. Los ríos de tipología 112 ocupan niveles intermedios correspondiendo los más altos a las tipologías 126 y 127 cuyos niveles medios son superiores a 17.

Tabla 3.2.3: Contraste de Kruskall-Wallis de comparación del indicador IPS por tipologías

		Tipología									
Casos	204	204 322 205 15 93 308 14									
Rango Promedio	527,66	643,50	413,42	342,57	181,96	849,94	1038,45				
Chi-cuadrado	504,78										
Gl	6										

Tabla 3.2.4: Contraste de la mediana de comparación del indicador IPS por tipologías

		Tipología									
109 112 115 116 117 126											
> Mediana	77	162	42	0	1	223	130				
<= Mediana	127	160	163	15	92	85	10				

1287
15,90
352,26
6
,000

Pvalor asintót. 0,0000

Tabla 3.2.5: Resultados de los contrastes de Mann-Whitney aplicados dos a dos al indicador IPS por tipologías

Tipologia	112	115	116	117	126	127
109	< +	> ++		>	<	<
112		>	>	>	<	<
115				>	<	<
116				>	<	<
117					<	<
126						<

⁺ El nivel mediano del indicador IPS en los ríos de la tipología 109 es significativamente inferior al de los ríos de la tipología 112

⁺⁺ El nivel mediano del indicador IPS en los ríos de la tipología 109 es significativamente superior al de los ríos de la tipología 115

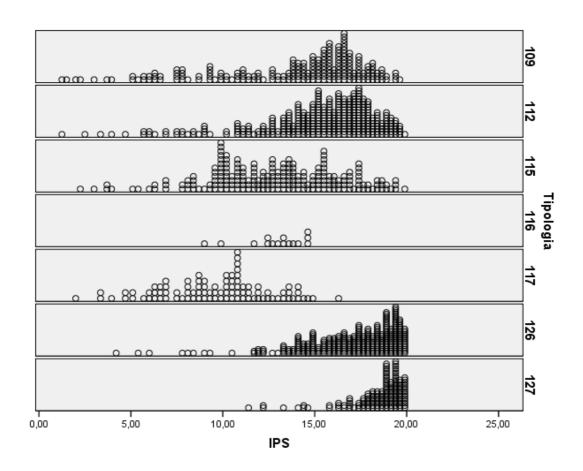


Figura 3.2.1: Diagrama de puntos del indicador IPS por tipologías

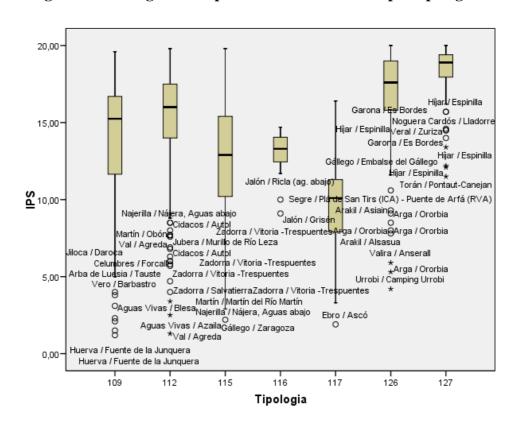


Figura 3.2.2: Diagrama de cajas del indicador IPS

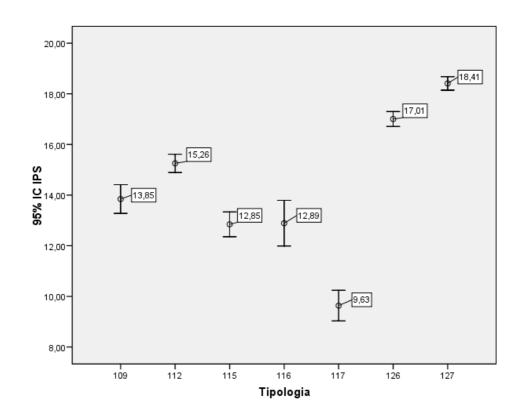


Figura 3.2.3: Barras de error del 95% del indicador IPS por tipologías (enmarcados los valores medios del indicador en cada tipología)

Finalmente en la Figura 3.2.4 y en la Tabla 3.2.6 se analiza la distribución de los niveles de calidad del agua tanto a nivel geográfico (Figura 3.2.4) como por tipologías (Tabla 3.2.6).

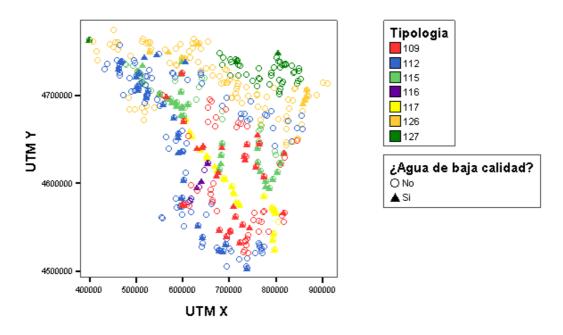


Figura 3.2.4: Distribución geográfica de los niveles de calidad de las aguas a partir del indicador IPS tal y como se detalla en la Tabla 2.2

Se observa (ver Figura 3.2.4) que la mayor parte de los puntos de muestreo con calidad de agua alta se concentra en la zonas de montaña (norte y noroeste) de la cuenca que corresponden a las tipologías 126 y 127. Por el contrario, los puntos de muestreo situados a lo largo del cauce del río Ebro y muy particularmente los pertenecientes a las 115 y, sobre todo, la 117, tienden a mostrar peores niveles de calidad. Este hecho queda puesto de manifiesto en la Tabla 3.2.6 en la que se muestran los porcentajes de muestras de agua contaminada y sin contaminar por tipología, así como los residuos tipificados de un contraste de la χ^2 cuadrado de independencia. Con respecto al indicador IPS, el nivel de calidad de las aguas es, en general bueno, al haber un 78,4% de puntos de muestreo con agua de buena calidad. Sin embargo, dichas distribución no es uniforme destacando, en este sentido, los ríos de la tipología 117 para los cuales el 78.5% de las muestras de agua obtenida fueron de baja calidad.

Tabla 3.2.6: Nivel de calidad del agua por tipologías según el indicador IPS

			: Agua de l	paja calidad?	Total
			No	Si	No
		Recuento	145	59	204
	109	% de Tipología	71,1%	28,9%	100,0%
		Residuos tipificados	-1,2	2,2	
		Recuento	281	41	322
	112	% de Tipología	87,3%	12,7%	100,0%
		Residuos tipificados	1,8	-3,4	
		Recuento	122	83	205
	115	% de Tipología	59,5%	40,5%	100,0%
		Residuos tipificados	-3,1	5,8	
		Recuento	12	3	15
Tipología	116	% de Tipología	80,0%	20,0%	100,0%
		Residuos tipificados	,1	-,1	
		Recuento	20	73	93
	117	% de Tipología	21,5%	78,5%	100,0%
		Residuos tipificados	-6,2	11,8	
		Recuento	292	16	308
	126	% de Tipología	94,8%	5,2%	100,0%
		Residuos tipificados	3,3	-6,2	
		Recuento	137	3	140
	127	% de Tipología	97,9%	2,1%	100,0%
		Residuos tipificados	2,6	-5,0	
	Total	Recuento	1009	278	1287
	1 Otai	% de Tipología	78,4%	21,6%	100,0%

3.3 CONSTRUCCIÓN DEL INDICADOR DE CALIDAD CONJUNTO

Dada la gran cantidad de datos ausentes existentes en cada uno de los indicadores biológicos por separado y con el fin de aprovechar al máximo la información disponible, se decidió construir un indicador de calidad conjunto que reflejara, con la mayor fiabilidad posible, la información contenida en los 2 indicadores biológicos anteriores. Dicho indicador se construyó de la siguiente manera: diremos que un punto de muestreo cumple con los niveles de calidad mínimo exigibles desde un punto de vista biológico si verifica los requisitos listados en la columna umbrales de calidad de la Tabla 2.2 para todos los indicadores biológicos del estudio observados en dicho punto. En otro caso diremos que no cumple dichos requisitos, a no ser que no tenga ningún indicador observado, en cuyo caso el indicador de calidad conjunto se declarará ausente. Este indicador jugará el papel de variable dependiente en los modelos de regresión estimados en la sección 5 del trabajo.

En la Tabla 3.3.1 se presenta la distribución de frecuencias de dicho indicador por tipologías. Se observa que la mayor parte de los puntos de muestreo (63,4%) verifican los requisitos mínimos de calidad.

Tabla 3.3.1: Nivel de calidad del agua por tipologías según el indicador conjunto

			¿Agua de b	aja calidad?	Total
			No	Si	No
		Recuento	148	160	308
	109	% de Tipología	48,1%	51,9%	100,0%
		Residuos tipificados	-3,4	4,4	
		Recuento	312	147	459
	112	% de Tipología	68,0%	32,0%	100,0%
		Residuos tipificados	1,2	-1,6	
		Recuento	116	156	272
	115	% de Tipología	42,6%	57,4%	100,0%
		Residuos tipificados	-4,3	5,6	
		Recuento	7	16	23
Tipología	116	% de Tipología	30,4%	69,6%	100,0%
		Residuos tipificados	-2,0	2,6	
		Recuento	24	97	121
	117	% de Tipología	19,8%	80,2%	100,0%
		Residuos tipificados	-6,0	7,9	
		Recuento	355	55	410
	126	% de Tipología	86,6%	13,4%	100,0%
		Residuos tipificados	5,9	-7,8	
		Recuento	157	16	173
	127	% de Tipología	90,8%	9,2%	100,0%
		Residuos tipificados	4,5	-6,0	
	Total	Recuento	1119	647	1766
	10181	% de Tipología	63,4%	36,6%	100,0%

Si analizamos la distribución de dicho indicador tanto geográficamente (ver Figura 3.3.1) como por tipologías (ver Tabla 3.3.1) se puede apreciar, de nuevo que los puntos de muestreo que no verifican los requisitos de calidad tienden a situarse a lo largo del cauce del río Ebro. Por tipologías la que muestra los niveles más bajos de calidad es la 117 (80,2% de las muestras con agua de mala calidad, ver Tabla 3.3.1)) cuyos puntos de muestreo se encuentran situados a lo largo de la parte baja del cauce del río Ebro (ver Figura 3.3.1) y que muestra mal comportamiento en ambos indicadores. Posiciones intermedias ocupan las tipologías 116 (69,6% de muestras con agua de mala calidad), 115 (57,4) y 109 (51,9%) cuyos ríos tienden a estar situados en la parte media-baja del cauce (ver Figura 3.3.1) y que tienden a tener bajos niveles del indicador IBMWP (ver Tabla 3.1.3). Finalmente los niveles más altos se dan en las tipologías 112 (32% de muestras con agua de mala calidad) y, sobre todo, las tipologías 126 (13,4%) y 127 (9,2%) cuyos puntos de muestreo tienden a estar situados en la parte alta y/o al sur de la cuenca pero alejadas del cauce del río Ebro y en las zonas de montaña de los Pirineos.

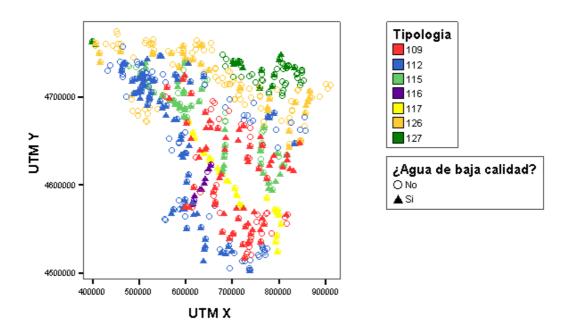


Figura 3.3.1: Distribución geográfica del indicador de calidad conjunto por tipologías

4. METODOLOGIA ESTADISTICA

Una vez realizado el análisis comparativo de los indicadores biológicos IBMWP e IPS por tipologías y rechazada, claramente, la hipótesis de homogeneidad de comportamiento de dichos indicadores por tipologías, nos planteamos, a continuación, si es posible determinar umbrales de calidad por tipologías para los parámetros físico-químicos detallados en la Tabla 2.3 que mejoren significativamente los resultados obtenidos si determinamos dichos umbrales sin tener en cuenta la tipología del río. A tal fin en esta sección se describe, brevemente, la metodología estadística utilizada para analizar estas cuestiones.

Para exponerla introducimos la siguiente notación. Sea Y = nivel de calidad conjunta codificada de forma binaria como:

$$Y = \begin{cases} 0 & \text{si la calidad del agua verifica los mínimos exigidos} \\ 1 & \text{si la calidad del agua no verifica los mínimos exigidos} \end{cases}$$

donde los mínimos exigidos vienen especificados por el indicador conjunto de calidad descrito en la sección 3.3.

Sea X la variable físico-química cuyos umbrales de calidad se quieren establecer. Supondremos, además, que es necesario realizar una transformación funcional g tal que g(X) es aproximadamente normal. La determinación de g fue llevada a cabo en un trabajo anterior y en este trabajo se tomará como dada.

Sea T la tipología del río del que procede la muestra.

La determinación de los umbrales de calidad se basa en la estimación de un modelo de regresión logística de la forma:

$$P(Y=1|X,T) = \frac{e^{\alpha_T + \beta_T g(X)}}{1 + e^{\alpha_T + \beta_T g(X)}}$$
(4.1)

donde P(Y=1|X,T) es la probabilidad de que si el valor del parámetro físico-químico de la muestra de agua es X y T la tipología del río de la que se extrajo, el agua de la zona considerada no verifique los estándares de calidad mínimo exigidos. Dicha probabilidad mide, por tanto, el riesgo de que dicha zona presente niveles de contaminación altos en el futuro. Observar, en particular, que la influencia de la tipología T en el modelo (4.1) se muestra a través de la dependencia de los parámetros del mismo, α_T y β_T , de dicha tipología. Si, en particular, $\alpha_T = \alpha$ y $\beta_T = \beta$ se concluiría que la tipología no ejerce una influencia significativa

sobre el riesgo y que, por lo tanto, podrían utilizarse los mismos umbrales en los ríos de toda la cuenca.

Además, si X_0 es tal que $g(X_0)=0$, se verifica que $P(Y=1|X_0,T)=\frac{e^{\alpha_T}}{1+e^{\alpha_T}}$ por lo que el parámetro α_T mide el riesgo de que una zona de tipología T y con un valor del indicador $X=X_0$, no verifique los estándares de calidad mínimos. Así mismo, el parámetro físico-químico es relevante para medir los niveles de calidad del agua si β_T es distinto de 0 de forma que, al ser la función g(X) creciente en X en todos los casos analizados, se tiene que si $\beta_T>0$ (respectivamente, si $\beta_T<0$) valores altos de X (respectivamente valores bajos de X) vendrán asociados a riesgos altos de contaminación en los ríos de tipología T.

Fijado un nivel de riesgo p de que el agua de la zona considerada no verifique los estándares de calidad mínimo exigidos, donde p = P(Y=1|X,T) con 0 , el umbral de calidad para el parámetro físico-químico <math>X en los ríos de tipología T vendrá dado por la expresión:

$$Umbral_{p,T} = g^{-1} \left(\frac{\log \left(\frac{p}{1-p} \right) - \alpha_{T}}{\beta_{T}} \right)$$
(4.2)

donde g⁻¹ denota a la función inversa de g. De esta forma se verifica que:

a) Si
$$\beta_T > 0$$
 y X \geq Umbral_{p,T} (4.3)

ó

b) Si
$$\beta_T < 0$$
 y $X \le Umbral_{p,T}$ (4.4)

el agua tiene un riesgo del 100p% de estar contaminada en el futuro. Si $\beta_T = 0$, X no es relevante para predecir los niveles de contaminación del agua en los ríos de tipología T y no debería ser utilizado para ello.

Así mismo, se lleva a cabo una validación intramuestral de los umbrales propuestos. Dicha validación utiliza los datos de la muestra analizada y los clasifica como muestras de agua contaminada o no contaminada de acuerdo a las reglas (4.3) o (4.4) según proceda, para un valor fijo de p. Utilizando dicho procedimiento de clasificación se calculan las siguientes cantidades:

% Aciertos cumplen =
$$100*\frac{n_{\text{bien clasificad os, cumplen}}}{n_{\text{cumplen}}}$$
 (4.5)

% Aciertos no cumplen =
$$100*\frac{n_{\text{bien clasificad os, no cumplen}}}{n_{\text{no cumplen}}}$$
 (4.6)

% Aciertos totales =
$$100*\frac{n_{\text{bien clasificad os}}}{n_{\text{total}}}$$
 (4.7)

donde $n_{bien\ clasificados,\ cumplen}$ y $n_{bien\ clasificados,\ no\ cumplen}$ son el número de muestras bien clasificadas entre las muestran que cumplen y no cumplen los requisitos de calidad, respectivamente; $n_{cumplen}$ y $n_{no\ cumplen}$ son, respectivamente, el número de muestras que cumplen y no cumplen dichos requisitos de calidad; $n_{bien\ clasificados} = n_{bien\ clasificados,\ cumplen} + n_{bien\ clasificados,\ no\ cumplen}$ es el número de muestras bien clasificadas y $n_{total} = n_{cumplen} + n_{no\ cumplen}$ es el número total de muestras.

Estos indicadores nos proporcionan una evaluación, en términos prácticos, de la fiabilidad del indicador X a la hora de pronosticar el riesgo que corre una zona de no verificar los indicadores de calidad mínimos exigidos para sus aguas. Así, el *Aciertos cumplen y Maciertos no cumplen* evalúan la fiabilidad del umbral dentro de los casos que cumplen y que no cumplen con los requisitos de calidad, respectivamente. Por su parte el *Aciertos totales* evalúa la fiabilidad global del umbral en el total de la muestra.

Dada la gran cantidad de posibles modelos de la forma (4.1) que sería necesario estimar se ha recurrido a procedimientos de selección de variables (denominados *step-wise* en inglés) tomando como posibles variables independientes del modelo las *dummies* correspondiente a cada tipología así como las interacciones de dichas *dummies* con las variables X correspondientes. Se han aplicado tanto procedimientos de selección hacia delante (*forward selection* en inglés) como de eliminación hacia atrás (*backward selection* en inglés) seleccionando el modelo con mejor comportamiento en términos del indicador (4.7).

Se ha realizado, además, un estudio comparativo, en términos de los indicadores (4.5) a (4.6) con el modelo que supone homogeneidad en todas las tipologías de forma que $\alpha_T = \alpha$ y β_T = β el cual se ha tomado como referencia. Finalmente, y en aquéllos parámetros físico-químicos en los que la CHE ha estado utilizando umbrales, se han incluido dichos umbrales en las comparaciones anteriores con el fin de evaluar su eficacia.

Los resultados obtenidos se exponen en la siguiente sección.

5. DETERMINACIÓN DE LOS UMBRALES DE CALIDAD

En esta sección se presentan los resultados obtenidos al aplicar la metodología descrita en la sección 4 a cada una de las variables físico-químicas consideradas en el estudio. Los resultados se presentan agrupando las variables por bloques según el tipo de indicador (ver Tabla 2.3). Para cada parámetro físico-químico se comienza realizando un estudio estadístico por tipologías de carácter exploratorio con el fin de analizar la posible existencia de sesgos que disminuyan la validez del análisis. Posteriormente se lleva a cabo el proceso de determinación de umbrales así como una validación estadística de los mismos aplicando la metodología descrita en la sección 4.

En todos los análisis se han utilizando el paquete estadístico SPSS 15.0 y la hoja de cálculo EXCEL 2003 como herramientas de cálculo.

5.1. UMBRALES DE CALIDAD PARA LOS INDICADORES GENERALES

En este apartado presentamos los umbrales de calidad biológica para todos los indicadores generales PH, COND20 y O2 cuyo significado puede verse en la Tabla 2.3.

5.1.1. Umbrales de calidad biológica para el índice pH

De acuerdo con estudios realizados en proyectos anteriores se ha tomado g(X) = X al no mostrar el indicador analizado problemas serios de falta de normalidad.

En la Tabla 5.1.1.1 se analiza el porcentaje de datos ausentes y válidos por tipologías y nivel de calidad biológica de las aguas. El porcentaje de datos ausentes oscila en torno a 16,5% llamando la atención el elevado porcentaje de datos ausentes en los ríos de la tipología 127 en las muestras de baja calidad (50%) así como el escaso número de muestras (8) disponibles de este tipo. Algo similar ocurre con los ríos de la tipología 116 de los que se dispone de un número escaso de observaciones. Todo ello hace que los resultados obtenidos respecto a estas dos tipologías hayan de tomarse con las debidas precauciones.

Tabla 5.1.1.1: Datos ausentes y válidos del índice pH por tipologías y nivel de calidad de las aguas

¿Aguas de baja	Tipología	Vá	álidos	Pe	erdidos	r	Fotal
calidad biológica?	Tipologia	Casos	Porcentaje	Casos	Porcentaje	Casos	Porcentaje
	109	116	78,4%	32	21,6%	148	100,0%
	112	266	85,3%	46	14,7%	312	100,0%
	115	108	93,1%	8	6,9%	116	100,0%
No	116	7	100,0%	0	0,0%	7	100,0%
	117	23	95,8%	1	4,2%	24	100,0%
	126	298	83,9%	57	16,1%	355	100,0%
	127	119	75,8%	38	24,2%	157	100,0%
	109	129	80,6%	31	19,4%	160	100,0%
	112	116	78,9%	31	21,1%	147	100,0%
	115	138	88,5%	18	11,5%	156	100,0%
Si	116	14	87,5%	2	12,5%	16	100,0%
	117	90	92,8%	7	7,2%	97	100,0%
	126	42	76,4%	13	23,6%	55	100,0%
	127	8	50,0%	8	50,0%	16	100,0%
Total	•	1474	83,5%	292	16,5%	1766	100,0%

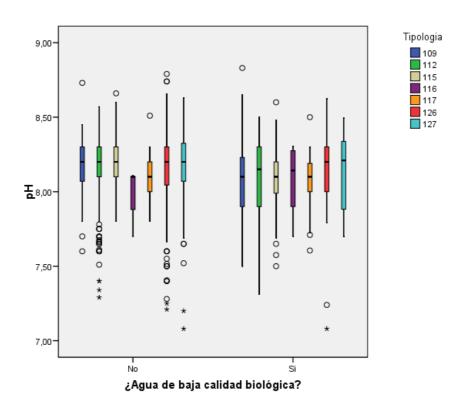


Figura 5.1.1.1: Diagrama de cajas del índice pH por tipologías y nivel de calidad biológica de las aguas

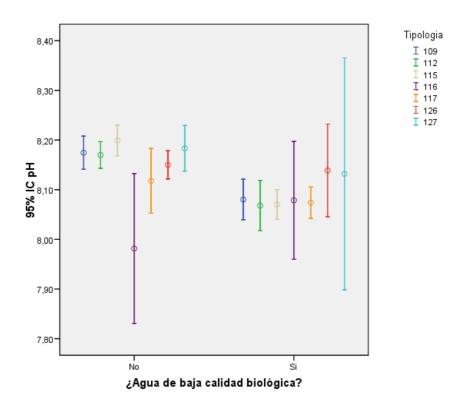


Figura 5.1.1.2: Barras de error del índice pH medio por tipologías y nivel de calidad biológica de las aguas (nivel de confianza 95%)

En las Figuras 5.1.1.1 y 5.1.1.2 así como en la Tabla 5.1.1.2 se presentan los resultados del estudio comparativo del índice pH entre las aguas de baja y alta calidad distinguiendo tipologías. Más concretamente se muestran los diagramas de cajas de dicho índice (Figura 5.1.1.1) y las barras de error del 95% de confianza para el índice pH medio (Figura 5.1.1.2) así como sus valores y los valores del índice pH mediano (Tabla 5.1.1.2). Finalmente, se dan los resultados obtenidos al realizar contrastes de Mann-Whitney presentando, para cada tipología y en total, los valores de los rangos medios de las muestras de alta y baja calidad así como el pvalor del contraste (Tabla 5.1.1.2).

Se observa la existencia de diferencias significativas en niveles medianos del índice pH del agua en las tipologías 109, 112 y 115 en las cuales dicho nivel tiende a ser significativamente superior en las aguas de alta calidad (ver Tabla 5.1.1.2). En el resto de las tipologías aunque, con la única excepción de la tipología 116, dicho patrón se conserva, no se aprecian diferencias que sean estadísticamente significativas.

Tabla 5.1.1.2: Análisis descriptivo del índice pH por tipologías

		Casos			Media			Mediana		Error	típico de l	a media		Rangos pr	romedio
		as de alidad?			as de didad?			s de baja idad?		• •	s de baja idad?		Aguas; calio	de baja lad?	Pvalor
Tipología	No	Si	Total	No	Si	Total	No	Si	Total	No	Si	Total	No	Si	Mann-Whitney
109	116	129	245	8,17	8,08	8,12	8,20	8,10	8,17	0,02	0,02	0,01	139,33	108,32	0,001
112	266	116	382	8,17	8,07	8,14	8,20	8,15	8,20	0,01	0,03	0,01	203,68	163,58	0,001
115	108	138	246	8,20	8,07	8,13	8,20	8,10	8,10	0,02	0,02	0,01	151,99	101,20	0,000
116	7	14	21	7,98	8,08	8,05	8,10	8,14	8,10	0,06	0,05	0,04	9,00	12,00	0,322
117	23	88	111	8,12	8,07	8,08	8,10	8,10	8,10	0,03	0,02	0,01	62,80	54,22	0,252
126	298	42	340	8,15	8,14	8,15	8,20	8,20	8,20	0,01	0,05	0,01	170,54	170,24	0,985
127	119	8	127	8,18	8,13	8,18	8,20	8,21	8,20	0,02	0,10	0,02	64,48	56,81	0,567
Total	937	535	1472	8,17	8,08	8,13	8,20	8,10	8,19	0,01	0,01	0,01	805,74	615,24	0,000

Tabla 5.1.1.3: Modelos estimados para el indicador pH distinguiendo y sin distinguir tipologías

	Dis	tinguiendo tipologi	ías	Sin distinguir tipologías				
Variables seleccionadas	β	Error Estándar	Pvalor	β	Error Estándar	Pvalor		
Constante	18,321	2,772	0,000	18,311	2,768	0,000		
pН				-2,283	0,340	0,000		
pH_109	-2,241	0,341	0,000					
pH_112	-2,358	0,342	0,000					
pH_115	-2,224	0,341	0,000					

Tabla 5.1.1.4: Umbrales estimados para el indicador pH y validación predictiva de los mismos distinguiendo y sin distinguir tipologías (en negrita los umbrales utilizados en el proceso de comparación por tipologías descrito en la Tabla 5.1.1.5)

	Umbra	ales disti tipología	nguiendo as		%Aciertos		Umbrales sin	%Aciertos			
Riesgo	109	112	115	Cumplen	No cumplen	Totales	distinguir tipología	Cumplen	No cumplen	Totales	
25,00%	8,67	8,23	8,73	22,00%	89,80%	51,80%	8,50	1,60%	99,20%	44,40%	
30,00%	8,55	8,13	8,62	37,60%	83,80%	57,80%	8,39	13,30%	94,30%	48,80%	
35,00%	8,45	8,03	8,52	44,70%	81,20%	60,70%	8,29	35,90%	80,40%	55,40%	
40,00%	8,36	7,94	8,42	51,60%	74,20%	61,50%	8,20	59,80%	62,70%	61,10%	
45,00%	8,27	7,85	8,33	61,80%	66,10%	63,70%	8,11	68,40%	55,90%	62,90%	
50,00%	8,18	7,77	8,24	72,70%	54,60%	64,70%	8,02	82,00%	37,10%	62,30%	
55,00%	8,09	7,68	8,15	83,50%	42,00%	65,30%	7,93	89,40%	25,30%	61,30%	
60,00%	8,00	7,60	8,06	91,80%	37,70%	63,70%	7,84	93,70%	14,60%	59,00%	
65,00%	7,90	7,51	7,96	95,10%	19,60%	62,00%	7,75	96,10%	8,60%	57,70%	
70,00%	7,80	7,41	7,86	98,40%	8,10%	58,80%	7,65	98,00%	5,00%	57,20%	
75,00%	7,69	7,30	7,74	99,60%	3,90%	57,60%	7,54	99,00%	2,90%	56,80%	

Tabla 5.1.1.5: Resultados obtenidos por tipologías utilizando los umbrales para el indicador pH mostrados en la Tabla 5.1.1.4 así como los umbrales proporcionados por la CHE

Calidad pronosticada							% Total aciertos			
		Distinguiendo tipología		Sin distinguir tipologías		CHE		Distinguiendo	Sin distinguir	
Tipologia	Calidad Observada	Alta	Baja	Alta	Baja	Alta	Baja	tipologias	tipologías	СНЕ
109	Alta	66,38%	33,62%	37,93%	62,07%	100,00%	0,00%	59,18%	58,37%	47,35%
	Baja	47,29%	52,71%	23,26%	76,74%	100,00%	0,00%	39,1070		
112	Alta	69,17%	30,83%	90,60%	9,40%	100,00%	0,00%	62.57%	69,11%	69,63%
	Baja	52,59%	47,41%	80,17%	19,83%	100,00%	0,00%	02,5770		
115	Alta	68,52%	31,48%	16,67%	83,33%	100,00%	0,00%	67,07%	60,57%	43,90%
	Baja	34,06%	65,94%	5,07%	94,93%	100,00%	0,00%	07,0770		
Total -	Alta	68,37%	31,63%	61,84%	38,16%	100,00%	0,00%	62,89%	63,69%	56,13%
	Baja	44,13%	55,87%	33,94%	66,06%	100,00%	0,00%	02,0970		

En la Tabla 5.1.1.3 se muestra el modelo seleccionado utilizando como variables independientes los indicadores de la tipología del río (denotados como TIP_x donde x es el número de la tipología) y sus interacciones con el índice pH (denotados como pH_x) y aplicando un procedimiento de selección de variables por eliminación hacia atrás tomando pvalor de entrada 0,01 y como pvalor de salida 0,02. Así mismo y, por razones comparativas, se muestra el modelo estimado utilizando como variables independientes una constante y el índice pH, el cual no tiene en cuenta, por tanto, la información proporcionada por la tipología del río. Los procesos de selección y estimación del modelo se han realizado utilizando, únicamente, las observaciones de las tipologías 109, 112 y 115 dado que, para el resto, los resultados obtenidos no fueron fiables debido al escaso tamaño muestral disponible en algunos de los grupos comparados.

Las estimaciones de los parámetros del modelo (ver Tabla 5.1.1.3) y del proceso de validación (ver Tabla 5.1.1.5) ponen de manifiesto que en los ríos de las tipologías 109, 112 y 115 el índice pH discrimina entre las muestras de agua de alta y baja calidad, siendo los coeficientes β estimados significativamente negativos.

Utilizando la expresión (4.2), el umbral para un riesgo 0 vendrá dado por la expresión:

Umbral_p =
$$-\frac{\log\left(\frac{p}{1-p}\right) - 18,311}{2,283}$$

si no se distingue entre tipologías y

$$Umbral_{p} = -\frac{log\left(\frac{p}{1-p}\right) - 18,321}{2,241*I(Tip = 109) + 2,358*I(Tip = 112) + 2,224*I(Tip = 115)}$$

si se distinguen tipologías, donde I(Tip=x) es la función indicador de la tipología x que vale 1 si el río tiene tipología x y 0 en otro caso. En ambos casos se detectará riesgo alto de baja calidad biológica del agua si el índice pH es menor o igual que dicho umbral.

En la Tabla 5.1.1.4 se muestran los umbrales estimados para una red de valores del riesgo p, así como los porcentajes de éxito entre las muestras que cumplen los requisitos de calidad, entre las que no la cumplen y el porcentaje de éxitos totales calculados utilizando las expresiones (4.5) a (4.7). Así, por ejemplo, si el nivel mediano

del índice pH es inferior a 8,11 el modelo sin distinguir tipologías estima que existe un riesgo superior al 45% de que las aguas sean de baja calidad biológica. Distinguiendo por tipologías este umbral sube a 8,27 si el río es de la tipología 109; baja a 7,85 si es de tipología 112 y sube a 8,33 si es de la tipología 115. Utilizando estos umbrales los porcentajes de éxito para cada uno de los dos procedimientos fueron, respectivamente, 68,4% y 61,80% entre las muestras que cumplen, 55,9% y 66,10% entre las que no cumplen y 62,9% y 63,7% en total.

Finalmente, en la Tabla 5.1.1.5 se muestran los resultados obtenidos por tipologías utilizando los umbrales anteriores (distinguiendo y sin distinguir tipologías) junto a los correspondientes al procedimiento utilizado por la CHE que clasifica una muestra de agua como de buena calidad si el nivel de pH está entre 6,5 y 9. Así, por ejemplo, en la tipología 109, los porcentaje de éxito en la muestras que cumplen los estándares de calidad fueron 66,38%, 37,93% y 100% utilizando umbrales distinguiendo por tipologías, sin distinguir y el procedimiento de la CHE, respectivamente. Estos porcentajes fueron 52,71%, 76,74% y 0,00% entre las que no cumplen dichos estándares.

Se observa, en primer lugar, que los límites proporcionados por la CHE son poco operativos al clasificar todas las muestras como buenas. Por otro lado, aunque a nivel global no existen diferencias significativas en los resultados obtenidos en términos de porcentajes de aciertos (62,89% frente a 63,69%), si se analizan dichos resultados por tipologías se observa que los porcentajes de aciertos en las muestras de alta y baja calidad están más equilibrados cuando los umbrales se fijan distinguiendo tipologías que cuando no se distinguen, lo cual los hace más fiables al no saber, en una situación real, en qué situación están las aguas antes de ser analizadas.

5.1.2. Umbrales de calidad biológica para la conductividad a 20° C

De acuerdo con estudios realizados en proyectos anteriores se ha tomado g(X) = log(X) al mostrar el indicador analizado problemas serios de falta de normalidad por una elevada asimetría positiva.

Tabla 5.1.2.1: Datos ausentes y válidos de la conductividad a 20° C por tipologías y nivel de calidad de las aguas

¿Aguas de baja	Tipología	Válidos		Perdidos		Total		
calidad biológica?	Tipologia	Casos	Porcentaje	Casos	Porcentaje	Casos	Porcentaje	
	109	116	78,4%	32	21,6%	148	100,0%	
	112	266	85,3%	46	14,7%	312	100,0%	
	115	108	93,1%	8	6,9%	116	100,0%	
No	116	7	100,0%	0	,0%	7	100,0%	
	117	23	95,8%	1	4,2%	24	100,0%	
	126	298	83,9%	57	16,1%	355	100,0%	
	127	119	75,8%	38	24,2%	157	100,0%	
	109	129	80,6%	31	19,4%	160	100,0%	
	112	116	78,9%	31	21,1%	147	100,0%	
	115	138	88,5%	18	11,5%	156	100,0%	
Si	116	14	87,5%	2	12,5%	16	100,0%	
	117	90	92,8%	7	7,2%	97	100,0%	
	126	42	76,4%	13	23,6%	55	100,0%	
	127	8	50,0%	8	50,0%	16	100,0%	
Total		1474	83,47%	292	16,53%	1766	100,0%	

En la Tabla 5.1.2.1 se analiza el porcentaje de datos ausentes y válidos por tipologías y nivel de calidad biológica de las aguas. El porcentaje de datos ausentes oscila en torno a 16,53% llamando la atención el elevado porcentaje de datos ausentes en los ríos de la tipología 127 en las muestras de baja calidad (50%) así como el escaso número de muestras (8) disponibles de este tipo. Algo similar ocurre con los ríos de la tipología 116 de los que se dispone de un número escaso de observaciones. Todo ello hace que los resultados obtenidos respecto a estas dos tipologías hayan de tomarse con las debidas precauciones.

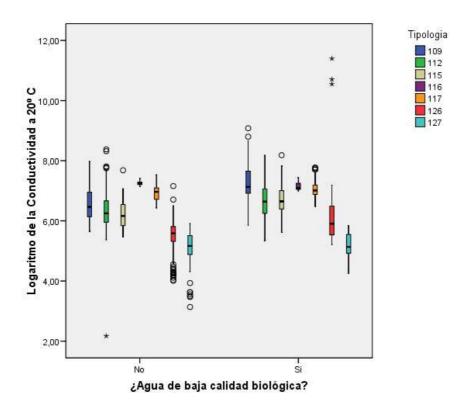


Figura 5.1.2.1: Diagrama de cajas del logaritmo de la conductividad a 20 $^{\rm o}$ C por tipologías y nivel de calidad biológica de las aguas

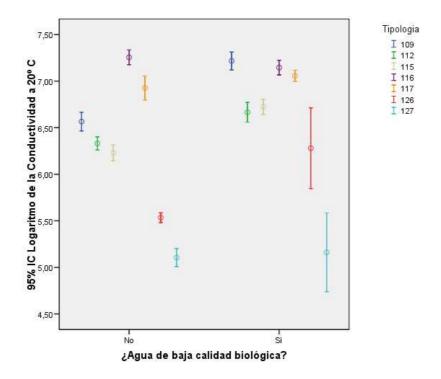


Figura 5.1.2.2: Barras de error de la media del logaritmo de la conductividad a 20° C por tipologías y nivel de calidad biológica de las aguas (nivel de confianza 95%)

En las Figuras 5.1.2.1 y 5.1.2.2 así como en la Tabla 5.1.2.2 se presentan los resultados del estudio comparativo del logaritmo de la conductividad a 20° C entre las aguas de baja y alta calidad biológicas distinguiendo tipologías. Más concretamente, se muestran los diagramas de cajas del logaritmo del indicador (Figura 5.1.2.1) y las barras de error del 95% de confianza para sus valores medios (Figura 5.1.2.2) así como sus valores medios y medianos (Tabla 5.1.2.2). Finalmente se dan los resultados obtenidos al realizar contrastes de Mann-Whitney presentando, para cada tipología y en total, los valores de los rangos medios de las muestras de alta y baja calidad biológica así como el pvalor del contraste (Tabla 5.1.2.2).

Se observa la existencia de diferencias significativas en niveles medianos del logaritmo de la conductividad a 20° C del agua en las tipologías 109, 112, 115 y 126 en las cuales dicho nivel tiende a ser significativamente inferior en las aguas de alta calidad (ver Tabla 5.1.2.2). En el resto de las tipologías aunque, con la única excepción de la tipología 116, dicho patrón se conserva, no se aprecian diferencias que sean estadísticamente significativas.

Tabla 5.1.2.2: Análisis descriptivo del logaritmo de la conductividad a 20° C por tipologías

		Casos			Media			Mediana		Error	típico de l	a media	Rangos promedio			
	¿Aguas de baja calidad?			¿Aguas de baja calidad?			¿Aguas de baja calidad?			¿Aguas de baja calidad?			0 0	de baja dad?	Pvalor Mann-Whitnev	
Tipología	No	Si	Total	No	Si	Total	No	Si	Total	No	Si	Total	No	Si	Mann-wintney	
109	116	129	245	6,57	7,22	6,91	6,46	7,13	6,95	0,05	0,05	0,04	84,25	157,84	0,000	
112	266	116	382	6,33	6,67	6,43	6,25	6,64	6,34	0,04	0,05	0,03	171,22	238,00	0,000	
115	108	138	246	6,23	6,72	6,51	6,16	6,65	6,49	0,04	0,04	0,03	85,90	152,92	0,000	
116	7	14	21	7,26	7,14	7,18	7,24	7,09	7,16	0,03	0,04	0,03	14,71	9,14	0,056	
117	23	90	113	6,93	7,06	7,03	6,97	7,01	7,01	0,06	0,03	0,03	45,72	59,88	0,064	
126	298	42	340	5,53	6,28	5,63	5,58	5,91	5,60	0,03	0,21	0,04	161,43	234,88	0,000	
127	119	8	127	5,11	5,16	5,11	5,17	5,13	5,17	0,05	0,18	0,05	63,91	65,31	0,917	
Total	937	537	1474	5,96	6,84	6,28	5,91	6,88	6,27	0,02	0,03	0,02	566,11	1036,56	0,000	

Tabla 5.1.2.3: Modelos estimados para el logaritmo de la conductividad a 20° C distinguiendo y sin distinguir tipologías

	Dis	tinguiendo tipologí	ías	Sin distinguir tipologías				
Variables seleccionadas	β	Error Estándar	Pvalor	β	Error Estándar	Pvalor		
Constante	-14,7753	1,5403	0,0000	-10,6341	0,9373	0,0000		
LCOND20				1,5728	0,1414	0,0000		
TIP_112	7,3311	2,0543	0,0004					
LCOND20_109	2,1644	0,2248	0,0000					
LCOND20_112	1,0184	0,2070	0,0000					
LCOND20_115	2,3253	0,2400	0,0000					

Tabla 5.1.2.4: Umbrales para la conductividad a 20 ° C y validación predictiva de los mismos distinguiendo y sin distinguir tipologías (en negrita señalados los umbrales utilizados en el proceso de comparación por tipologías descrito en la Tabla 5.1.2.5)

	Umbrales distinguiendo tipologías				% Aciertos		Umbrales sin distinguir		% Aciertos			
Riesgo	109	112	115	Cumplen	No cumplen	Totales	tipologías	Cumplen	No cumplen	Totales		
40,00%	764,457	1003,712	482,882	72,70%	71,80%	72,30%	667,424	65,30%	70,80%	67,70%		
41,00%	779,256	1045,457	491,578	73,50%	70,20%	72,10%	685,269	66,70%	69,20%	67,80%		
42,00%	794,228	1088,609	500,363	75,30%	68,90%	72,50%	703,453	68,00%	67,40%	67,70%		
43,00%	809,388	1133,242	509,247	77,10%	67,90%	73,10%	721,996	69,00%	65,50%	67,50%		
44,00%	824,747	1179,436	518,236	79,80%	66,60%	73,40%	740,918	70,60%	64,50%	67,90%		
45,00%	840,322	1227,273	527,340	79,60%	66,30%	73,80%	760,240	71,60%	62,40%	67,60%		

Tabla 5.1.2.5: Resultados obtenidos por tipologías utilizando los umbrales de la conductividad a 20° C de la Tabla 5.1.2.4 así como los umbrales proporcionados por la CHE

				Calidad pro	nosticada			%	76,33% 74,29%		
		Distinguie	ndo tipología	Sin distingu	ir tipologías	CI	HE	Distinguiendo	Sin distinguir		
Tipologia	Calidad Observada	Alta	Baja	Alta	Baja	Alta	Baja	tipologías	U	СНЕ	
109	Alta	64,66%	35,34%	56,90%	43,10%	87,07%	12,93%	76 33%	74 20%	60,41%	
109	Baja	13,18%	86,82%	10,08%	89,92%	63,57%	36,43%	70,5570	74,2970	00,4170	
112	Alta	84,21%	15,79%	69,55%	30,45%	95,11%	4,89%	69,11%	65 18%	70,94%	
112	Baja	65,52%	34,48%	44,83%	55,17%	84,48%	15,52%	09,1170	05,1870	70,9470	
115	Alta	52,78%	47,22%	75,93%	24,07%	99,07%	0,93%	73,17%	65,04%	51,63%	
113	Baja	10,87%	89,13%	43,48%	56,52%	85,51%	14,49%	75,1770	03,0470	31,0370	
Total	Alta	72,65%	27,35%	67,96%	32,04%	94,08%	5,92%	72,28%	67.70%	62,54%	
Total	Baja	28,20%	71,80%	32,64%	67,36%	77,81%	22,19%	72,2070	07,7070	02,3470	

En la Tabla 5.1.2.3 se muestra el modelo seleccionado utilizando como variables independientes los indicadores de la tipología del río (denotados como TIP_x donde x es el número de la tipología) y sus interacciones con el logaritmo de la conductividad a 20° C (denotados como LCOND20_x) y aplicando un procedimiento de selección de variables por eliminación hacia atrás tomando pvalor de entrada 0,01 y como pvalor de salida 0,02. Así mismo y, por razones comparativas, se muestra el modelo estimado utilizando como variables independientes una constante y dicho logaritmo, el cual no tiene en cuenta, por tanto, la información proporcionada por la tipología del río. Las estimaciones se han realizado utilizando, únicamente, las observaciones de las tipologías 109, 112 y 115 dado que, para el resto, los resultados obtenidos no fueron fiables debido al escaso tamaño muestral disponible en algunos de los grupos comparados.

Las estimaciones de los parámetros del modelo (ver Tabla 5.1.2.3) y del proceso de validación (ver Tabla 5.1.2.5) ponen de manifiesto que en los ríos de las tipologías 109, 112 y 115 el índice de conductividad a 20° discrimina entre las muestras de agua de alta y baja calidad, siendo los coeficientes β estimados significativamente positivo.

Utilizando la expresión (4.2), el umbral para un riesgo 0 vendrá dado por la expresión:

$$Umbral_{p} = exp \left(\frac{log \left(\frac{p}{1-p} \right) + 10,63}{1,57} \right)$$

si no se distingue entre tipologías y

$$Umbral_{p} = exp \left(\frac{log\left(\frac{p}{1-p}\right) + 14,78 - 7,33 * I(Tip = 112)}{2,16 * I(Tip = 109) + 1,02 * I(Tip = 112) + 2,33 * I(Tip = 115)} \right)$$

si se distinguen tipologías, donde I(Tip=x) es la función indicador de la tipología x que vale 1 si el río tiene tipología x y 0 en otro caso. En ambos casos se detectará riesgo alto de baja calidad biológica del agua si el nivel de conductividad a 20° C es mayor o igual que dicho umbral.

En la Tabla 5.1.2.4 se muestran los umbrales estimados para una red de valores del riesgo p, así como los porcentajes de éxito entre las muestras que cumplen los requisitos de calidad, entre las que no la cumplen y el porcentaje de éxitos totales calculados utilizando las expresiones (4.5) a (4.7). Así, por ejemplo, si el nivel mediano de la conductividad es superior a 667,42 μS/cm el modelo estimado sin distinguir tipologías estima que existe un riesgo superior al 40% de que las aguas sean de baja calidad biológica. Distinguiendo por tipologías este umbral sube a 764,46 μS/cm si el río es de la tipología 109; 1003,71 μS/cm si es de tipología 112 y baja a 482,88 μS/cm si es de la tipología 115. Utilizando estos umbrales los porcentajes de éxito para cada uno de los dos procedimientos fueron, respectivamente, 65,3% y 72,7% entre las muestras que cumplen, 70,8% y 71,8% entre las que no cumplen y 67,7% y 72,3% en total.

Finalmente, en la Tabla 5.1.2.5 se muestran los resultados obtenidos por tipologías utilizando los umbrales señalados en negrita (distinguiendo y sin distinguir tipologías) junto a los correspondientes al procedimiento utilizado por la CHE el cual clasifica el agua como de alta calidad si su nivel de conductividad es inferior a 1500 μS/cm en las 3 tipologías analizadas. Así, por ejemplo, en la tipología 109, los porcentaje de éxito en la muestras que cumplen los estándares de calidad fueron 64,66%, 56,90% y 87,07% utilizando umbrales distinguiendo por tipologías, sin distinguir y el procedimiento de la CHE, respectivamente. Estos porcentajes fueron 86,82%, 89,92% y 36,43% entre las que no cumplen dichos estándares.

Se observa, en primer lugar, que los límites proporcionados por la CHE son poco operativos al clasificar un 77,81% aguas de baja calidad como buenas. Por otro lado, aunque a nivel global el procedimiento que distingue entre tipologías obtiene un mayor porcentaje de éxitos global que el que no distingue (72,28% frente a 67,7%), si analizamos los porcentajes de éxitos por tipologías, se observa que los porcentajes de aciertos en las muestras de alta y baja calidad están más equilibrados cuando los umbrales se fijan sin distinguir tipologías que cuando se distinguen, lo cual los hace más fiables al no saber, en una situación real, en qué situación están las aguas antes de ser analizadas.

5.1.3. Umbrales de calidad biológica para el oxígeno disuelto (en concentración)

De acuerdo con estudios realizados en proyectos anteriores se ha tomado g(X) = X al no mostrar el indicador analizado problemas serios de falta de normalidad.

Tabla 5.1.3.1: Datos ausentes y válidos del oxígeno disuelto por tipologías y nivel de calidad de las aguas

¿Aguas de baja	Tinología	Vá	álidos	Pe	erdidos	Total		
calidad biológica?	Tipología	Casos	Porcentaje	Casos	Porcentaje	Casos	Porcentaje	
	109	112	75,7%	36	24,3%	148	100,0%	
	112	261	83,7%	51	16,3%	312	100,0%	
	115	107	92,2%	9	7,8%	116	100,0%	
No	116	7	100,0%	0	,0%	7	100,0%	
	117	23	95,8%	1	4,2%	24	100,0%	
	126	295	83,1%	60	16,9%	355	100,0%	
	127	119	75,8%	38	24,2%	157	100,0%	
	109	127	79,4%	33	20,6%	160	100,0%	
	112	112	76,2%	35	23,8%	147	100,0%	
	115	134	85,9%	22	14,1%	156	100,0%	
Si	116	14	87,5%	2	12,5%	16	100,0%	
	117	90	92,8%	7	7,2%	97	100,0%	
	126	42	76,4%	13	23,6%	55	100,0%	
	127	8	50,0%	8	50,0%	16	100,0%	
Total		1451	82,2%	315	17,8%	1766	100.0%	

En la Tabla 5.1.3.1. se analiza el porcentaje de datos ausentes y válidos por tipologías y nivel de calidad biológica de las aguas. El porcentaje de datos ausentes oscila en torno a 17,8% llamando la atención el elevado porcentaje de datos ausentes en los ríos de la tipología 127 en las muestras de baja calidad (50%) lo cual, unido al escaso número de muestras (8) de este tipo hace que los resultados correspondientes a esta tipología deban tomarse con las debidas precauciones.

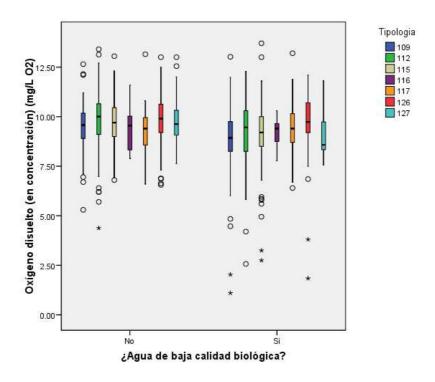


Figura 5.1.3.1: Diagrama de cajas del oxígeno disuelto (en concentración) por tipologías y nivel de calidad biológica de las aguas

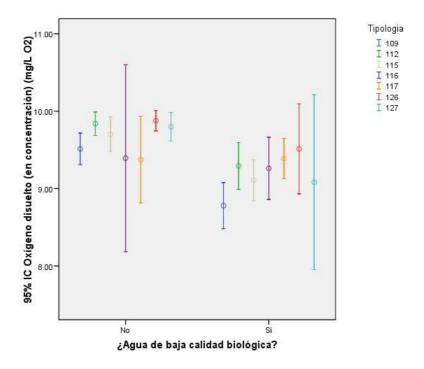


Figura 5.1.3.2: Barras de error de la media del oxígeno disuelto por tipologías y nivel de calidad biológica de las aguas (nivel de confianza 95%)

En las Figuras 5.1.3.1 y 5.1.3.2 así como en la Tabla 5.1.3.2 se presentan los resultados del estudio comparativo del nivel de oxígeno disuelto (en concentración) entre las aguas de baja y alta calidad biológicas distinguiendo por tipologías. Más concretamente, se muestran los diagramas de cajas del nivel de oxígeno disuelto (Figura 5.1.3.1) y las barras de error del 95% de confianza para sus valores medios (Figura 5.1.3.2) así como sus valores medios y medianos (Tabla 5.1.3.2). Finalmente se dan los resultados obtenidos al realizar contrastes de Mann-Whitney presentando, para cada tipología y en total, los valores de los rangos medios de las muestras de alta y baja calidad biológica así como el pvalor del contraste (Tabla 5.1.3.2).

Se observa la existencia de diferencias significativas en los niveles medianos del oxígeno disuelto del agua en las tipologías 109, 112, 115 y 127 en las cuales dicho nivel tiende a ser significativamente superior en las aguas de alta calidad (ver Tabla 5.1.3.2). En el resto de las tipologías aunque, con la única excepción de la tipología 117, dicho patrón se conserva, no se aprecian diferencias que sean estadísticamente significativas.

Tabla 5.1.3.2: Análisis descriptivo del oxígeno disuelto por tipologías

		Casos		Media				Mediana		Error	típico de l	a media	Rangos promedio			
	¿Aguas de baja calidad?			¿Aguas de baja calidad?			¿Aguas de baja calidad?			• •	¿Aguas de baja calidad?		Aguas; calio	de baja lad?	Pvalor Mann-Whitney	
Tipología	No	Si	Total	No	Si	Total	No	Si	Total	No	Si	Total	No	Si	Mann-wintney	
109	112	127	239	9,51	8,78	9,12	9,58	8,93	9,25	0,10	0,15	0,10	139,25	103,03	0,000	
112	261	112	373	9,84	9,29	9,67	10,00	9,46	9,88	0,08	0,15	0,07	197,87	161,67	0,003	
115	107	134	241	9,70	9,11	9,37	9,70	9,20	9,40	0,11	0,13	0,09	137,25	108,02	0,001	
116	7	14	21	9,39	9,26	9,31	9,55	9,40	9,40	0,49	0,19	0,20	11,14	10,93	0,971	
117	23	90	113	9,37	9,39	9,39	9,40	9,40	9,40	0,27	0,13	0,12	55,85	57,29	0,850	
126	295	42	337	9,88	9,51	9,83	9,90	9,74	9,90	0,07	0,29	0,07	170,05	161,65	0,601	
127	119	8	127	9,80	9,08	9,75	9,63	8,58	9,60	0,09	0,48	0,09	65,76	37,88	0,038	
Total	924	527	1451	9,77	9,15	9,55	9,80	9,30	9,60	0,04	0,07	0,04	790,95	612,13	0,000	

Tabla 5.1.3.3: Modelos estimados para el nivel de oxígeno disuelto distinguiendo y sin distinguir tipologías

	Dis	tinguiendo tipologi	ías	Sir	distinguir tipologí	as
Variables seleccionadas	β	Error Estándar	Pvalor	β	Error Estándar	Pvalor
Constante	2,8290	0,5256	0,0000	3,1206	0,5216	0,0000
O2				-0,3582	0,0549	0,0000
O2_109	-0,2969	0,0577	0,0000			
O2_112	-0,3824	0,0557	0,0000			
O2_115	-0,2777	0,0563	0,0000			

Tabla 5.1.3.4: Umbrales del oxígeno disuelto y validación predictiva de los mismos distinguiendo y sin distinguir tipologías (en negrita señalados los umbrales utilizados en el proceso de comparación por tipologías descrito en la Tabla 5.1.3.5)

	Umbı	ales disting tipologías	•		% Aciertos		Umbrales sin distinguir	% Aciertos			
Riesgo	109	112	115	Cumplen	No cumplen	Totales	tipologías	Cumplen	No cumplen	Totales	
40,00%	10,90	8,46	11,65	50,20%	75,30%	61,20%	9,84	48,10%	69,20%	57,30%	
41,00%	10,76	8,35	11,50	51,30%	73,50%	61,00%	9,73	53,30%	66,80%	59,20%	
42,00%	10,62	8,24	11,35	52,90%	72,70%	61,50%	9,61	56,30%	64,10%	59,70%	
43,00%	10,48	8,14	11,20	54,60%	70,80%	61,70%	9,50	61,70%	58,70%	60,40%	
44,00%	10,34	8,03	11,06	56,50%	68,40%	61,70%	9,39	64,40%	55,50%	60,50%	
45,00%	10,21	7,92	10,91	58,50%	67,60%	62,50%	9,27	67,50%	53,10%	61,20%	
46,00%	10,07	7,82	10,77	61,70%	66,50%	63,80%	9,16	71,30%	49,60%	61,80%	
47,00%	9,93	7,71	10,62	63,30%	63,50%	63,40%	9,05	74,80%	46,40%	62,40%	
48,00%	9,80	7,61	10,48	67,10%	60,30%	64,10%	8,94	77,70%	42,40%	62,30%	
49,00%	9,66	7,50	10,33	70,80%	57,10%	64,80%	8,82	80,20%	38,60%	62,00%	
50,00%	9,53	7,40	10,19	72,90%	54,70%	64,90%	8,71	82,30%	35,40%	61,80%	

Tabla 5.1.3.5: Resultados obtenidos por tipologías utilizando los umbrales para el oxígeno disuelto de la Tabla 5.1.3.4 así como los umbrales proporcionados por la CHE

			usi como io	b uniorates	Proporeion.	ados por la	CIIL				
				Calidad pr	onosticada			% T	otal aciertos		
		Distinguien	do tipología	Sin distingu	ir tipologías	CH	E	Distinguiendo	Sin distinguir		
Tipología	Calidad							tipologias	tipologías	CHE	
Tipologia	Observada	Alta	Baja	Alta	Baja	Alta	Baja	uporogras	uporogras		
109	Alta	32,14%	67,86%	55,36%	44,64%	98,21%	1,79%	58,58%	61.51%	51,46%	
107	Baja	18,11%	81,89%	33,07%	66,93%	89,76%	10,24%	36,3670	01,5170	31,4070	
112	Alta	95,79%	4,21%	66,28%	33,72%	97,32%	2,68%	70,78%	61,39%	71,05%	
112	Baja	87,50%	12,50%	50,00%	50,00%	90,18%	9,82%	70,7070	01,3770	71,0570	
115	Alta	16,82%	83,18%	57,01%	42,99%	95,33%	4,67%	56,85%	57,68%	46,89%	
113	Baja	11,19%	88,81%	41,79%	58,21%	91,79%	8,21%	30,6370	37,0870	40,0970	
Total	Alta	63,33%	36,67%	61,67%	38,33%	97,08%	2,92%	63,42%	60.38%	58,73%	
Total	Total Baja	36,46%	63,54%	41,29%	58,71%	90,62%	9,38%	05,4270	00,3670	38,/3%	

En la Tabla 5.1.3.3 se muestra el modelo seleccionado utilizando como variables independientes los indicadores de la tipología del río (denotados como TIP_x donde x es el número de la tipología) y sus interacciones con el nivel de oxígeno disuelto (denotados como O2_x) y aplicando un procedimiento de selección de variables por eliminación hacia atrás tomando pvalor de entrada 0,01 y como pvalor de salida 0,02. Así mismo y, por razones comparativas, se muestra el modelo estimado utilizando como variables independientes una constante y dicho indicador, el cual no tiene en cuenta, por tanto, la información proporcionada por la tipología del río. Las estimaciones se han realizado utilizando, únicamente, las observaciones de las tipologías 109, 112 y 115 dado que, para el resto, los resultados obtenidos no fueron fiables debido al escaso tamaño muestral disponible en algunos de los grupos comparados.

Las estimaciones de los parámetros del modelo (ver Tabla 5.1.3.3) y del proceso de validación (ver Tabla 5.1.3.5) ponen de manifiesto que en los ríos de las tipologías 109, 112 y 115 el nivel de oxígeno disuelto en el agua discrimina entre las muestras de agua de alta y baja calidad, siendo los coeficiente β estimados significativamente negativos.

Utilizando la expresión (4.2), el umbral para un riesgo 0 vendrá dado por la expresión:

$$Umbral_p = -\frac{\log\left(\frac{p}{1-p}\right) - 3{,}12}{0.36}$$

si no se distingue entre tipologías y

$$Umbral_{p} = -\frac{log\left(\frac{p}{1-p}\right) - 2,83}{0,30*I(Tip=109) + 0,38*I(Tip=112) + 0,28*I(Tip=115)}$$

si se distinguen tipologías, donde I(Tip=x) es la función indicador de la tipología x que vale 1 si el río tiene tipología x y 0 en otro caso. En ambos casos se detectará riesgo alto de baja calidad biológica del agua si el nivel de oxígeno disuelto en el agua es menor o igual que dicho umbral.

En la Tabla 5.1.3.4 se muestran los umbrales estimados para una red de valores del riesgo p, así como los porcentajes de éxito entre las muestras que cumplen los requisitos de calidad, entre las que no la cumplen y el porcentaje de éxitos totales

calculados utilizando las expresiones (4.5) a (4.7). Así, por ejemplo, si el nivel de oxígeno disuelto en el agua es inferior a 9,05 mg/L el modelo estimado sin distinguir tipologías estima que existe un riesgo superior al 47% de que las aguas sean de baja calidad biológica. Distinguiendo por tipologías este umbral cambia a 9,93 mg/L si el río es de la tipología 109; 7,71 mg/L si es de tipología 112 y 10,62 mg/L si es de la tipología 115. Utilizando estos umbrales los porcentajes de éxito para cada uno de los dos procedimientos fueron, respectivamente, 74,8% y 63,3%% entre las muestras que cumplen, 46,4% y 63,5% entre las que no cumplen y 62,4% y 63,4% en total.

Finalmente, en la Tabla 5.1.3.5 se muestran los resultados obtenidos por tipologías utilizando los umbrales en negrita (distinguiendo y sin distinguir tipologías) junto a los correspondientes al procedimiento utilizado por la CHE, el cual clasifica el agua como de alta calidad si su nivel de oxígeno disuelto en agua es superior a 6,7 mg/L en la tipología 109 y 7,2 mg/L en las tipologías 112 y 115. Así, por ejemplo, en la tipología 109, los porcentaje de éxito en la muestras que cumplen los estándares de calidad fueron 32,14%, 55,36% y 98,21% utilizando umbrales distinguiendo por tipologías, sin distinguir y el procedimiento de la CHE, respectivamente. Estos porcentajes fueron 81,89%, 66,93% y 10,24% entre las que no cumplen dichos estándares.

Se observa, en primer lugar, que los límites proporcionados por la CHE son poco operativos al clasificar un 90,62% aguas de baja calidad como buenas. Por otro lado, aunque a nivel global se obtienen resultados ligeramente mejores, en términos de porcentajes de aciertos, distinguiendo tipologías que sin distinguir (63,42% frente a 60,38%), si analizamos los resultados por tipologías, se observa que los porcentajes de aciertos en las muestras de alta y baja calidad están más equilibrados cuando los umbrales se fijan sin distinguir tipologías que cuando se distinguen, lo cual los hace más fiables al no saber, en una situación real, en qué situación están las aguas antes de ser analizadas.

5.2. UMBRALES DE CALIDAD PARA LOS INDICADORES DE MATERIA ORGÁNICA

En este apartado presentamos los umbrales de calidad biológica para el indicador de materia orgánica DQO cuyo significado puede verse en la Tabla 2.3.

5.2.1. Umbrales de calidad biológica para la demanda química de oxígeno

De acuerdo con estudios realizados en proyectos anteriores se ha tomado g(X) = log(X) al mostrar el indicador analizado problemas serios de falta de normalidad por una elevada asimetría positiva.

Tabla 5.2.1.1: Datos ausentes y válidos del logaritmo de la demanda química de oxígeno por tipologías y nivel de calidad biológica de las aguas

¿Aguas de baja	Tinología	Vá	álidos	Pe	erdidos	Total	
calidad biológica?	Tipología	Casos	Porcentaje	Casos	Porcentaje	Casos	Porcentaje
	109	78	52,7%	70	47,3%	148	100,0%
	112	175	56,1%	137	43,9%	312	100,0%
	115	62	53,4%	54	46,6%	116	100,0%
No	116	4	57,1%	3	42,9%	7	100,0%
	117	15	62,5%	9	37,5%	24	100,0%
	126	191	53,8%	164	46,2%	355	100,0%
	127	64	40,8%	93	59,2%	157	100,0%
	109	86	53,8%	74	46,3%	160	100,0%
	112	69	46,9%	78	53,1%	147	100,0%
	115	100	64,1%	56	35,9%	156	100,0%
Si	116	8	50,0%	8	50,0%	16	100,0%
	117	57	58,8%	40	41,2%	97	100,0%
	126	25	45,5%	30	54,5%	55	100,0%
	127	2	12,5%	14	87,5%	16	100,0%
Total		936	53,0%	830	47,0%	1766	100,0%

En la Tabla 5.2.1.1 se analiza el porcentaje de datos ausentes y válidos por tipologías y nivel de calidad biológica de las aguas. El porcentaje de datos ausentes es muy elevado oscilando en torno a un 47%, siendo incluso mayor en los ríos de la tipología 127 en las muestras de baja calidad biológica (87,5% y un tamaño muestral igual a 2). Se aprecia, además, un número escaso de observaciones disponibles en la tipología 116. Todo ello hace que los resultados en general y, particularmente, los correspondientes a estas dos tipologías deban tomarse con las debidas precauciones.

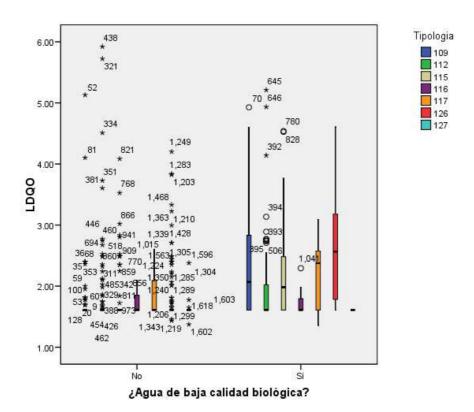


Figura 5.2.1.1: Diagrama de cajas del logaritmo de la demanda química de oxígeno por tipologías y nivel de calidad biológica de las aguas

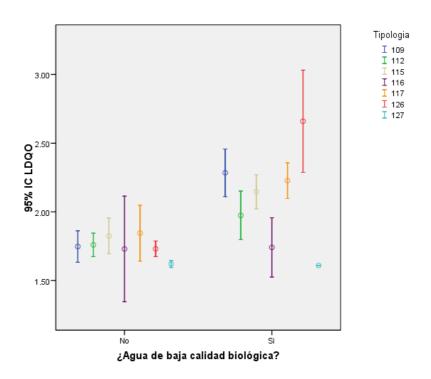


Figura 5.2.1.2: Barras de error de la media del logaritmo de la demanda química media de oxígeno por tipologías y nivel de calidad biológica de las aguas (nivel de confianza 95%)

En las Figuras 5.2.1.1 y 5.2.1.2 así como en la Tabla 5.2.1.2 se presentan los resultados del estudio comparativo del logaritmo de la demanda química de óxigeno entre las aguas de baja y alta calidad biológica distinguiendo tipologías. Más concretamente se muestran sus diagramas de cajas (Figura 5.2.1.1) y las barras de error del 95% de confianza (Figura 5.2.1.2) así como sus valores medios y medianos (Tabla 5.2.1.2). Finalmente, se dan los resultados obtenidos al realizar contrastes de Mann-Whitney presentando, para cada tipología y en total, los valores de los rangos medios de las muestras de alta y baja calidad biológicas así como el pvalor del contraste (Tabla 5.2.1.2).

Se observa que, con la única excepción de las tipologías 116 y 127, la mediana del logaritmo de la demanda química de oxígeno tiende a ser significativamente inferior en las aguas de alta calidad biológica (ver Tabla 5.2.1.2 y Figura 5.2.1.2).

Tabla 5.2.1.2: Análisis descriptivo del logaritmo de la demanda química de oxígeno por tipologías

		Casos			Media			Mediana		Error	típico de l	a media		Rangos p	romedio
	¿Aguas de baja calidad?			¿Aguas de baja calidad?			¿Aguas de baja calidad?				s de baja idad?			de baja lad?	Pvalor
Tipología	No	Si	Total	No	Si	Total	No	Si	Total	No	Si	Total	No	Si	Mann-Whitney
109	78	86	164	1,75	2,28	2,03	1,61	2,07	1,61	0,06	0,09	0,06	64,82	98,53	0,000
112	175	69	244	1,76	1,97	1,82	1,61	1,61	1,61	0,04	0,09	0,04	115,20	141,02	0,000
115	62	100	162	1,83	2,15	2,02	1,61	1,98	1,61	0,06	0,06	0,05	62,45	93,31	0,000
116	4	8	12	1,73	1,74	1,74	1,61	1,61	1,61	0,12	0,09	0,07	6,50	6,50	1,000
117	15	57	72	1,85	2,23	2,15	1,61	2,37	2,22	0,09	0,06	0,06	23,90	39,82	0,007
126	191	25	216	1,73	2,66	1,84	1,61	2,56	1,61	0,03	0,18	0,04	99,30	178,80	0,000
127	64	2	66	1,62	1,61	1,62	1,61	1,61	1,61	0,01	0,00	0,01	33,53	32,50	0,955
Total	589	347	936	1,74	2,18	1,91	1,61	1,95	1,61	0,02	0,04	0,02	394,14	594,72	0,000

Tabla 5.2.1.3: Modelos estimados para el logaritmo de la demanda química de oxígeno distinguiendo y sin distinguir tipologías

	Dis	tinguiendo tipologi	ías	Sin distinguir tipologías				
Variables seleccionadas	β	Error Estándar	Pvalor	β	Error Estándar	Pvalor		
Constante	-5,4534	0,8473	0,0000	-3,1166	0,3064	0,0000		
LDQO				1,3986	0,1587	0,0000		
TIP_112	4,7009	0,8532	0,0000					
TIP_115	5,7497	0,8561	0,0000					
TIP_117	6,8501	0,8774	0,0000					
LDQO_109	2,3159	0,3651	0,0000					
LDQO_126	1,4222	0,3353	0,0000					

Tabla 5.2.1.4: Umbrales estimados para la demanda química de oxígeno y validación predictiva distinguiendo y sin distinguir tipologías (en negrita señalados los umbrales utilizados en el proceso de comparación por tipologías descrito en la Tabla 5.2.1.5)

	Umbra	ales distinguiendo tipologías		%Aciertos		Umbrales sin distinguir tipologías	%Aciertos			
Riesgo	109	109 126		Cumplen No cumplen Totales		Ombi ales sin distinguir tipologias	Cumplen	No cumplen	Totales	
26,00%	6,71	22,18	0,40%	99,70%	39,40%	4,40	0,40%	99,70%	39,40%	
28,00%	7,01	23,82	27,00%	96,10%	55,70%	4,73	0,40%	99,70%	39,40%	
30,00%	7,31	25,50	27,30%	95,90%	55,80%	5,07	83,70%	57,00%	73,20%	
32,00%	7,61	27,23	27,50%	95,30%	55,60%	5,42	84,80%	56,10%	73,50%	
34,00%	7,91	29,02	70,90%	66,30%	69,90%	5,78	86,00%	55,80%	74,10%	

Tabla 5.2.1.5: Resultados obtenidos por tipologías utilizando los umbrales estimados para la demanda química de oxígeno de la Tabla 5.2.1.4 así como los umbrales proporcionados por la CHE

						_ 1 1					
				Calidad pro	onosticada						
		Distinguien	do tipología	Sin distingu	ir tipologías	CI	ΗE	0	% Total aciertos		
		Alta	Baja	Alta	Baja	Alta	Baja	Distinguiendo tipologias	Sin distinguir tipologías	СНЕ	
109	Alta	14,10%	85,90%	82,05%	17,95%	97,44%	2,56%	56,71%	67,07%	60,98%	
107	Baja	4,65%	95,35%	46,51%	53,49%	72,09%	27,91%	30,7170	07,0770	00,9670	
112	Alta	100,00%	0,00%	85,71%	14,29%	96,00%	4,00%	71,72%	71,31%	73,36%	
112	Baja	100,00%	0,00%	65,22%	34,78%	84,06%	15,94%	71,7270	71,3170	73,3070	
115	Alta	0,00%	100,00%	79,03%	20,97%	91,94%	8,06%	61,73%	67,90%	42,59%	
113	Baja	0,00%	100,00%	39,00%	61,00%	88,00%	12,00%	01,7570	07,9070	42,39%	
117	Alta	0,00%	100,00%	66,67%	33,33%	100,00%	0,00%	79,17%	69,44%	36,11%	
117	Baja	0,00%	100,00%	29,82%	70,18%	80,70%	19,30%	77,1770	09,4470	30,1170	
126	Alta	98,43%	1,57%	85,34%	14,66%	95,81%	4,19%	88,89%	85,19%	89,35%	
120	Baja	84,00%	16,00%	16,00%	84,00%	60,00%	40,00%	00,0770	05,1970	07,33%	
Total	Alta	71,79%	28,21%	83,69%	16,31%	95,78%	4,22%	71,91%	73,19%	66 090/	
Total	Baja	27,89%	72,11%	43,03%	56,97%	79,82%	20,18%	/1,91%	73,19%	66,08%	

En la Tabla 5.2.1.3 se muestra el modelo seleccionado utilizando como variables independientes los indicadores de la tipología del río (denotados como TIP_x donde x es el número de la tipología) y sus interacciones con el logaritmo de la demanda química de oxígeno (denotados como LDQO_x) y aplicando un procedimiento de selección de variables por eliminación hacia atrás tomando pvalor de entrada 0,01 y como pvalor de salida 0,02. Así mismo y, por razones comparativas, se muestra el modelo estimado utilizando como variables independientes una constante y dicho logaritmo el cual no tiene en cuenta, por tanto, la información proporcionada por la tipología del río. Las estimaciones se han realizado utilizando las observaciones de las tipologías 109, 112, 115, 117 y 126.

Las estimaciones de los parámetros del modelo (ver Tabla 5.2.1.3) y del proceso de validación (ver Tabla 5.2.1.5) ponen de manifiesto que en los ríos de las tipologías 109, 112, 115, 117 y 126 la demanda química de oxígeno discrimina significativamente entre las muestras de agua de alta y baja calidad biológicas, siendo los coeficientes β estimados significativamente positivos.

Utilizando la expresión (4.2), el umbral para un riesgo 0 vendrá dado por la expresión:

$$Umbral_p = exp \left(\frac{log \left(\frac{p}{1-p} \right) + 3,12}{1,4} \right)$$

si no se distinguen tipologías y

$$Umbral_{p} = \exp \left(\frac{log\left(\frac{p}{1-p}\right) + 5,45 - 4.7*I(Tip = 112) - 5.75*I(Tip = 115) - 6.85*I(Tip = 117)}{2,32*I(Tip = 109) + 1.42*I(Tip = 126)} \right)$$

si se distinguen tipologías, donde I(Tip=x) es la función indicador de la tipología x que vale 1 si el río tiene tipología x y 0 en otro caso. En ambos casos se detectará riesgo alto de baja calidad biológica del agua si su demanda química de oxígeno es mayor o igual que dicho umbral.

En la Tabla 5.2.1.4 se muestran los umbrales estimados para una red de valores del riesgo p, así como los porcentajes de éxito entre las muestras que cumplen los

requisitos de calidad, entre las que no la cumplen y el porcentaje de éxitos totales calculados utilizando las expresiones (4.5) a (4.7). Así, por ejemplo, si el nivel mediano de la demanda química de oxígeno es superior a 5,78 mg/L O2 el modelo estimado sin distinguir tipologías estima que existe un riesgo superior de al menos un 34% de que las aguas del río sean de baja calidad biológica. Distinguiendo tipologías este umbral aumenta a 7,91 mg/L O2 si el río es de la tipología 109 y a 29,02 mg/L O2 si es de la 126. Utilizando estos umbrales los porcentajes de éxito para cada uno de los dos procedimientos fueron, respectivamente, 86% y 70,9% entre las muestras que cumplen, 55,8% y 66,3% entre las que no cumplen y 74,1% y 69,9% en total.

Finalmente, en la Tabla 5.2.1.5 se muestran los resultados obtenidos por tipologías utilizando los umbrales en negrita (distinguiendo y sin distinguir tipologías) junto a los correspondientes al procedimiento utilizado por la CHE, el cual clasifica el agua como de alta calidad si su nivel de demanda química es inferior a 15 mg/L O2. Así, por ejemplo, en la tipología 109, los porcentaje de éxito en la muestras que cumplen los estándares de calidad fueron 14,10%, 82,05% y 97,44% utilizando umbrales distinguiendo por tipologías, sin distinguir y el procedimiento de la CHE, respectivamente. Estos porcentajes fueron 95,35%, 53,49% y 27,91% entre las que no cumplen dichos estándares.

Se observa, en primer lugar, que los límites proporcionados por la CHE son poco operativos al clasificar un 79,82% aguas de baja calidad como buenas. Por otro lado, aunque a nivel global no existen diferencias significativas en los resultados obtenidos, en términos de porcentajes de aciertos (71,91% frente a 73,19%), si los analizamos por tipologías los porcentajes de aciertos en las muestras de alta y baja calidad están más equilibrados cuando los umbrales se fijan sin distinguir tipologías que cuando se distinguen, lo cual los hace más fiables al no saber, en una situación real, en qué situación están las aguas antes de ser analizadas.

5.3. UMBRALES DE CALIDAD PARA LOS INDICADORES DE NUTRIENTES

En este apartado presentamos los umbrales de calidad biológica para todos los indicadores de nutrientes NH4, NO2, NO3, PO4 y P_TOT cuyo significado puede verse en la Tabla 2.3.

5.3.1. Umbrales de calidad biológica para el amonio total

De acuerdo con estudios realizados en proyectos anteriores se ha tomado g(X) = log(X) al mostrar el indicador analizado problemas serios de falta de normalidad por una elevada asimetría positiva.

Tabla 5.3.1.1: Datos ausentes y válidos del logaritmo del nivel de amonio total por tipologías y nivel de calidad biológica de las aguas

¿Aguas de baja	Tipología	Vá	álidos	Pe	rdidos	ŗ	Γotal
calidad biológica?	Tipologia	Casos	Porcentaje	Casos	Porcentaje	Casos	Porcentaje
	109	108	73,0%	40	27,0%	148	100.0%
	112	251	80,4%	61	19,6%	312	100.0%
	115	100	86,2%	16	13,8%	116	100.0%
No	116	7	100,0%	0	,0%	7	100.0%
	117	23	95,8%	1	4,2%	24	100.0%
	126	269	75,8%	86	24,2%	355	100.0%
	127	105	66,9%	52	33,1%	157	100.0%
	109	105	65,6%	55	34,4%	160	100.0%
	112	88	59,9%	59	40,1%	147	100.0%
	115	120	76,9%	36	23,1%	156	100.0%
Si	116	13	81,3%	3	18,8%	16	100.0%
	117	84	86,6%	13	13,4%	97	100.0%
	126	30	54,5%	25	45,5%	55	100.0%
	127	8	50,0%	8	50,0%	16	100.0%
Total	·	1311	74,24%	455	25,76%	1766	100.0%

En la Tabla 5.3.1.1 se analiza el porcentaje de datos ausentes y válidos por tipologías y nivel de calidad biológica de las aguas. El porcentaje de datos ausentes oscila en torno a 25,76% siendo las tipologías más afectadas por este problema la 112 y la 126 en la que el porcentaje de datos ausentes está por encima del 40%, por lo que los resultados correspondientes a dichas tipologías deberían tomarse con precaución.

En este indicador también existe un alto porcentaje de datos censurados (82,84%) cuyo nivel de amonio es inferior a 0,13 mg/L NH4 y cuyo valor se ha tomado

igual a 0,065, siendo la mayor parte de los mismos (72,65%) muestras de agua de alta calidad.

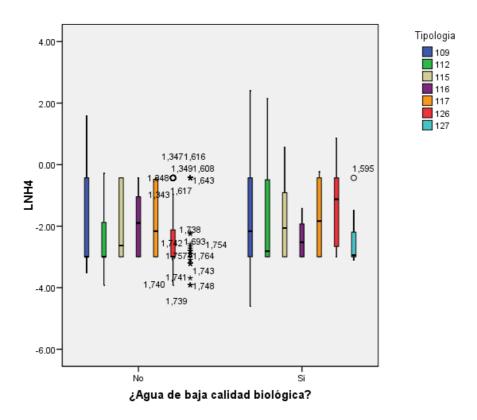
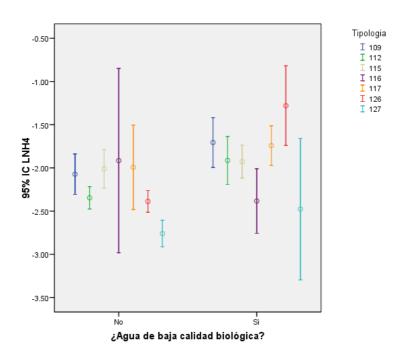



Figura 5.3.1.1: Diagrama de cajas del logaritmo del nivel de amonio total por tipologías y nivel de calidad biológica de las aguas

Figura 5.3.1.2: Barras de error de la media del logaritmo del nivel de amonio total por tipologías y nivel de calidad biológica de las aguas (nivel de confianza 95%)

En las Figuras 5.3.1.1 y 5.3.1.2 así como en la Tabla 5.3.1.3 se presentan los resultados del estudio comparativo del logaritmo del nivel de amonio total, para los datos no censurados, entre las aguas de baja y alta calidad biológica distinguiendo tipologías. Más concretamente se muestran sus diagramas de cajas (Figura 5.3.1.1) y las barras de error del 95% de confianza (Figura 5.3.1.2) así como sus valores medios y medianos (Tabla 5.3.1.3). Finalmente, se dan los resultados obtenidos al realizar contrastes de Mann-Whitney presentando, para cada tipología y en total, los valores de los rangos medios de las muestras de alta y baja calidad biológicas así como el pvalor del contraste (Tabla 5.3.1.3).

Se observa que únicamente para los ríos de las tipologías 109, 112 y 126 la mediana del logaritmo del nivel de amonio total tiende a ser significativamente inferior en las aguas de alta calidad biológica (ver Tabla 5.3.1.3). En el resto de tipologías, a excepción de la 116, dicho patrón se conserva, aunque no se aprecian diferencias que sean estadísticamente significativas (ver Figura 5.3.1.2).

Tabla 5.3.1.2: Análisis descriptivo del logaritmo del nivel de amonio total por tipologías

		Casos			Media			Mediana		Error	típico de l	a media	Rangos promedio			
	0 0	as de alidad?		¿Aguas de baja calidad?			¿Aguas de baja calidad?			¿Aguas de baja calidad?			¿Aguas de baja calidad?		Pvalor	
Tipología	No	Si	Total	No	Si	Total	No	Si	Total	No	Si	Total	No	Si	Mann-Whitney	
109	108	105	213	-2,07	-1,71	-1,89	-3,00	-2,16	-3,00	0,12	0,15	0,09	99,44	114,78	0,051	
112	251	88	339	-2,35	-1,91	-2,23	-3,00	-2,81	-3,00	0,07	0,14	0,06	162,17	192,34	0,005	
115	100	120	220	-2,01	-1,93	-1,96	-2,63	-2,06	-2,16	0,11	0,10	0,07	107,68	112,85	0,527	
116	7	13	20	-1,92	-2,38	-2,22	-1,90	-2,53	-2,34	0,44	0,17	0,19	11,79	9,81	0,485	
117	23	84	107	-1,99	-1,74	-1,80	-2,16	-1,83	-1,90	0,24	0,12	0,10	48,20	55,59	0,295	
126	269	30	299	-2,39	-1,28	-2,28	-3,00	-1,13	-3,00	0,06	0,23	0,06	142,81	214,45	0,000	
127	105	8	113	-2,76	-2,48	-2,74	-3,00	-2,95	-3,00	0,08	0,35	0,08	56,19	67,63	0,272	
Total	863	448	1311	-2,32	-1,82	-2,15	-3,00	-2,00	-3,00	0,04	0,06	0,03	602,65	758,78	0,000	

Tabla 5.3.1.3: Modelos estimados para el logaritmo del nivel de amonio total distinguiendo y sin distinguir tipologías

	Dis	tinguiendo tipologi	as	Sir	n distinguir tipologí	as
Variables seleccionadas	β	Error Estándar	Pvalor	β	Error Estándar	Pvalor
Constante	2,6341	0,5518	0,0000	0,1328	0,1204	0,2699
LNH4				0,3421	0,0518	0,0000
TIP_109	-1,5052	0,6590	0,0224			
TIP_112	-2,0124	0,7391	0,0065			
LNH4_109	0,6213	0,1711	0,0003			
LNH4_112	0,8012	0,2288	0,0005			
LNH4_115	1,1874	0,2655	0,0000			
LNH4_117	0,6762	0,2856	0,0179			
LNH4_126	2,4275	0,2863	0,0000			

Tabla 5.3.1.4: Umbrales estimados para el amonio total y validación predictiva de los mismos distinguiendo y sin distinguir tipologías (en negrita señalados los umbrales utilizados en el proceso de comparación por tipologías descrito en la Tabla 5.3.1.5)

	Uı	Umbrales distinguiendo tipologías					%Aciertos		Umbrales sin distinguir		%Aciertos	
Riesgo	109	112	115	117	126	Cumplen	No cumplen	Totales	tipologías	Cumplen	No cumplen	Totales
26,00%	0.030	0.125	0.045	0.004	0.220	44,00%	91,00%	60,50%	0.032	1,20%	99,80%	36,90%
28,00%	0.036	0.142	0.049	0.005	0.229	44,00%	91,00%	60,50%	0.043	1,50%	99,80%	37,10%
30,00%	0.042	0.160	0.053	0.006	0.238	44,00%	91,00%	60,50%	0.057	63,80%	59,00%	62,10%
32,00%	0.048	0.180	0.058	0.007	0.248	44,10%	91,00%	60,60%	0.075	64,70%	57,40%	62,10%
34,00%	0.056	0.201	0.062	0.008	0.257	76,30%	62,30%	71,40%	0.098	65,50%	57,10%	62,50%
36,00%	0.064	0.224	0.067	0.009	0.267	76,00%	62,00%	71,20%	0.126	69,40%	51,10%	62,70%
38,00%	0.074	0.250	0.072	0.010	0.276	76,40%	61,60%	71,20%	0.162	72,40%	45,90%	62,80%
40,00%	0.085	0.277	0.077	0.011	0.286	76,50%	61,40%	71,20%	0.207	73,50%	40,50%	61,50%

Tabla 5.3.1.5: Resultados obtenidos por tipologías utilizando los umbrales del nivel de amonio total de la Tabla 5.3.1.4 así como los umbrales proporcionados por la CHE

				Calidad pro	nosticada						
		Distinguien	do tipología	Sin distingu	ir tipologías	CH	ΙE	0,	% Total aciertos		
		Alta	Baja	Alta	Baja	Alta	Baja	Distinguiendo tipologias	Sin distinguir tipologías	СНЕ	
109	Alta	3,70%	96,30%	60,19%	39,81%	69,44%	30,56%	48,36%	56,81%	52,11%	
103	Baja	5,71%	94,29%	46,67%	53,33%	65,71%	34,29%	40,5070	50,6170	32,1170	
112	Alta	94,02%	5,98%	66,93%	33,07%	80,08%	19,92%	74,34%	61,65%	67,55%	
112	Baja	81,82%	18,18%	53,41%	46,59%	68,18%	31,82%	74,34%	01,03%	07,33%	
115	Alta	0,00%	100,00%	50,00%	50,00%	70,00%	30,00%	54,09%	54,55%	45,91%	
113	Baja	0,83%	99,17%	41,67%	58,33%	74,17%	25,83%	34,0770	34,3370	43,7170	
117	Alta	0,00%	100,00%	47,83%	52,17%	69,57%	30,43%	78,50%	62,62%	42,06%	
117	Baja	0,00%	100,00%	33,33%	66,67%	65,48%	34,52%	70,5070	02,0270	42,0070	
126	Alta	98,51%	1,49%	71,38%	28,62%	79,55%	20,45%	93,31%	71,57%	75,92%	
120	Baja	53,33%	46,67%	26,67%	73,33%	56,67%	43,33%	75,5170	71,57/0	13,9270	
Total	Alta	67,24%	32,76%	64,71%	35,29%	76,70%	23,30%	71,05%	62,05%	60,53%	
Total	Total Baja	22,25%	77,75%	42,62%	57,38%	67,92%	32,08%	/ 1,05 /0	02,0370	00,33%	

En la Tabla 5.3.1.3 se muestra el modelo seleccionado utilizando como variables independientes los indicadores de la tipología del río (denotados como TIP_x donde x es el número de la tipología) y sus interacciones con el logaritmo del nivel de amonio total (denotados como LNH4_x) y aplicando un procedimiento de selección de variables por eliminación hacia atrás tomando pvalor de entrada 0,01 y como pvalor de salida 0,02. Así mismo y, por razones comparativas, se muestra el modelo estimado utilizando como variables independientes una constante y dicho logaritmo, el cual no tiene en cuenta, por tanto, la información proporcionada por la tipología del río. Las estimaciones se han realizado utilizando las observaciones de las tipologías 109, 112, 115, 117 y 126.

Las estimaciones de los parámetros del modelo (ver Tabla 5.3.1.3) y del proceso de validación (ver Tabla 5.3.1.5) ponen de manifiesto que en los ríos de las tipologías 109, 112, 115, 117 y 126 el nivel de amonio total discrimina significativamente entre las muestras de agua de alta y baja calidad biológicas, siendo los coeficientes β estimados significativamente positivos.

Utilizando la expresión (4.2), el umbral para un riesgo 0 vendrá dado por la expresión:

$$Umbral_p = exp \left(\frac{log(\frac{p}{1-p}) - 0,133}{0,342} \right)$$

si no se distinguen tipologías y

 $Umbral_p =$

$$= \exp \left[\frac{\log \left(\frac{p}{1-p}\right) - 2,634 + 1,505 * I(Tip = 109) + 2,012 * I(Tip = 112)}{0,621 * I(Tip = 109) + 0,801 * I(Tip = 112)) + 1,187 * I(Tip = 115) + 0,676 * I(Tip = 117) + 2,427 * I(Tip = 126)} \right]$$

si se distinguen tipologías, donde I(Tip=x) es la función indicador de la tipología x que vale 1 si el río tiene tipología x y 0 en otro caso. En ambos casos se detectará riesgo alto de baja calidad biológica del agua si el nivel de amonio total de ésta es mayor o igual que dicho umbral.

En la Tabla 5.3.1.4 se muestran los umbrales estimados para una red de valores del riesgo p, así como los porcentajes de éxito entre las muestras que cumplen los requisitos de calidad, entre las que no la cumplen y el porcentaje de éxitos totales calculados utilizando las expresiones (4.5) a (4.7). Así, por ejemplo, si el nivel mediano de amonio total es superior a 0,075 mg/L NH4 el modelo estimado sin distinguir tipologías estima que existe un riesgo superior de al menos un 32% de que las aguas del río sean de baja calidad biológica. Distinguiendo tipologías este umbral cambia a 0,048 mg/L NH4 si el río es de la tipología 109, 0,180 mg/L NH4 si el río es de la tipología 112, 0,058 mg/L NH4 si es de la tipología 115, 0,007 mg/L NH4 si es de la 117 y 0,248 mg/L NH4 si es de la 126. Utilizando estos umbrales los porcentajes de éxito para cada uno de los dos procedimientos fueron, respectivamente, 64,70% y 44,10% entre las muestras que cumplen; 57,40% y 91% entre las que no cumplen y 62,10% y 60,6% en total.

Finalmente, en la Tabla 5.3.1.5 se muestran los resultados obtenidos por tipologías utilizando los umbrales señalados en negrita (distinguiendo y sin distinguir tipologías) junto a los correspondientes al procedimiento utilizado por la CHE que clasifica el agua como de alta calidad si su nivel de amonio total es inferior a 0,40 mg/L NH4 . Así, por ejemplo, en la tipología 109, los porcentaje de éxito en la muestras que cumplen los estándares de calidad fueron 3,70%, 60,19% y 69,44% utilizando umbrales distinguiendo por tipologías, sin distinguir y el procedimiento de la CHE, respectivamente. Estos porcentajes fueron 94,29%, 53,33% y 34,29% entre las que no cumplen dichos estándares.

Se observa, en primer lugar, que los límites proporcionados por la CHE son poco operativos al clasificar un 67,92% aguas de baja calidad como buenas. Por otro lado, aunque a nivel global distinguir por tipologías obtiene un porcentaje de aciertos superior a no distinguir (71,05% frente a 62,05%), si los analizamos por tipologías se observa que el procedimiento que las distingue tiende a clasificar las muestras siguiendo la regla de la mayoría obteniendo unos porcentajes de aciertos en las muestras de alta y baja calidad más desequilibrados que cuando los umbrales se fijan sin distinguirlas, lo cual los hace menos fiables al no saber, en una situación real, en qué situación están las aguas antes de ser analizadas.

5.3.2. Umbrales de calidad biológica para los nitritos

De acuerdo con estudios realizados en proyectos anteriores se ha tomado g(X) =log(X) al mostrar el indicador analizado problemas serios de falta de normalidad por una elevada asimetría positiva.

Tabla 5.3.2.1: Datos ausentes y válidos del logaritmo del nivel de nitritos

por tipologías y nivel de calidad biológica de las aguas

¿Aguas de baja			álidos		rdidos	7	Гotal
calidad biológica?	Tipología	Casos	Porcentaje	Casos	Porcentaje	Casos	Porcentaje
	109	74	50,0%	74	50,0%	148	100,0%
	112	182	58,3%	130	41,7%	312	100,0%
	115	47	40,5%	69	59,5%	116	100,0%
No	116	3	42,9%	4	57,1%	7	100,0%
	117	14	58,3%	10	41,7%	24	100,0%
	126	182	51,3%	173	48,7%	355	100,0%
	127	93	59,2%	64	40,8%	157	100,0%
	109	73	45,6%	87	54,4%	160	100,0%
	112	60	40,8%	87	59,2%	147	100,0%
	115	63	40,4%	93	59,6%	156	100,0%
Si	116	11	68,8%	5	31,3%	16	100,0%
	117	34	35,1%	63	64,9%	97	100,0%
	126	17	30,9%	38	69,1%	55	100,0%
	127	7	43,8%	9	56,3%	16	100,0%
Total		860	48,7%	906	51,3%	1766	100,0%

En la Tabla 5.3.2.1 se analiza el porcentaje de datos ausentes y válidos por tipologías y nivel de calidad biológica de las aguas. El porcentaje de datos ausentes es muy elevado y oscila en torno a 51,3% destacando los casos de las tipologías 117 y 126 cuyos porcentajes suben por encima del 60%.

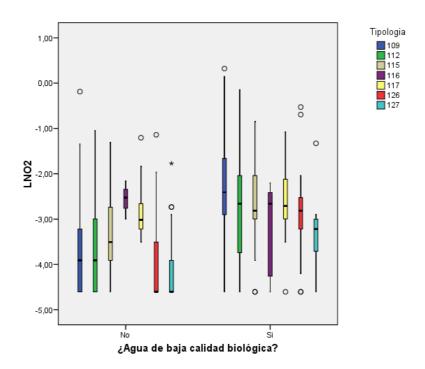


Figura 5.3.2.1: Diagrama de cajas del logaritmo del nivel de nitritos por tipologías y nivel de calidad biológica de las aguas

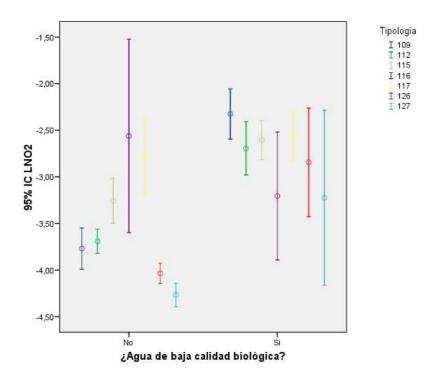


Figura 5.3.2.2: Barras de error de la media del logaritmo del nivel de nitritos por tipologías y nivel de calidad biológica de las aguas (nivel de confianza 95%)

En las Figuras 5.3.2.1 y 5.3.2.2 así como en la Tabla 5.3.2.2. se presentan los resultados del estudio comparativo del logaritmo del nivel de nitritos entre las aguas de baja y alta calidad biológica distinguiendo tipologías. Más concretamente se muestran sus diagramas de cajas (Figura 5.3.2.1) y las barras de error del 95% de confianza (Figura 5.3.2.2) así como sus valores medios y medianos (Tabla 5.3.2.2). Finalmente, se dan los resultados obtenidos al realizar contrastes de Mann-Whitney presentando, para cada tipología y en total, los valores de los rangos medios de las muestras de alta y baja calidad biológicas así como el p-valor del contraste (Tabla 5.3.2.2).

Se observa que, con la excepción de los ríos de tipología 116, 117 y127, la media del logaritmo del nivel de nitritos tiende a ser significativamente inferior en las aguas de alta calidad biológica (ver Tabla 5.3.2.2). En el resto de tipologías, con la única excepción de la 116, aunque dicho patrón se conserva, no se aprecian diferencias que sean estadísticamente significativas (ver Figura 5.3.2.2).

Tabla 5.3.2.2: Análisis descriptivo del logaritmo del nivel de nitritos por tipologías

		Casos			Media			Mediana		Error	típico de l	a media	Rangos promedio			
	0 0	as de alidad?		¿Aguas de baja calidad?			¿Aguas de baja calidad?			¿Aguas de baja calidad?			¿Aguas de baja calidad?		Pvalor Many Whitney	
Tipología	No	Si	Total	No	Si	Total	No	Si	Total	No	Si	Total	No	Si	Mann-Whitney	
109	74	73	147	-3,77	-2,33	-3,05	-3,91	-2,41	-3,00	0,11	0,13	0,11	49,72	98,61	0,000	
112	182	60	242	-3,69	-2,69	-3,44	-3,91	-2,66	-3,69	0,07	0,14	0,07	105,96	168,64	0,000	
115	47	63	110	-3,26	-2,61	-2,88	-3,51	-2,81	-3,00	0,12	0,10	0,08	41,52	65,93	0,000	
116	3	11	14	-2,56	-3,21	-3,07	-2,53	-2,66	-2,59	0,24	0,31	0,25	9,67	6,91	0,368	
117	14	34	48	-2,79	-2,57	-2,63	-3,02	-2,71	-2,73	0,19	0,13	0,11	20,29	26,24	0,180	
126	182	17	199	-4,03	-2,84	-3,93	-4,61	-2,81	-4,20	0,05	0,27	0,06	94,63	157,50	0,000	
127	93	7	100	-4,27	-3,22	-4,19	-4,61	-3,22	-4,61	0,06	0,38	0,07	48,26	80,29	0,001	
Total	595	265	860	-3,83	-2,60	-3,45	-3,91	-2,66	-3,54	0,04	0,06	0,04	345,73	620,83	0,000	

Tabla 5.3.2.3: Modelos estimados para el logaritmo del nivel de nitritos distinguiendo y sin distinguir tipologías

	Dis	stinguiendo tipologí	ías	Sir	n distinguir tipologí	as
Variables seleccionadas	β	Error Estándar	Pvalor	β	Error Estándar	Pvalor
Constante	2,8591	0,3680	0,0000	3,0203	0,3648	0,0000
LN02				1,1065	0,1134	0,0000
LNO2_109	0,9560	0,1207	0,0000			
LNO2_112	1,2166	0,1223	0,0000			
LNO2_115	0,8812	0,1334	0,0000			

Tabla 5.3.2.4: Umbrales estimados para el nivel de nitritos y validación predictiva de los mismos distinguiendo y sin distinguir tipologías (en negrita señalados los umbrales utilizados en el proceso de comparación por tipologías descrito en la Tabla 5.3.2.5)

	Umbra	ales disti tipología	nguiendo as		% Aciertos		Umbrales sin	% Aciertos			
Riesgo	109	112	115	Cumplen	mplen No cumplen		distinguir tipologías	Cumplen	No cumplen	Totales	
40,00%	0,033	0,068	0,025	75,20%	77,00%	76,00%	0,045	72,60%	73,50%	72,90%	
41,00%	0,034	0,071	0,026	76,20%	74,00%	75,40%	0,047	72,60%	73,50%	72,90%	
42,00%	0,036	0,073	0,027	76,20%	74,00%	75,40%	0,049	72,60%	73,50%	72,90%	
43,00%	0,037	0,076	0,028	76,20%	73,50%	75,20%	0,051	79,20%	63,80%	73,10%	
44,00%	0,039	0,078	0,030	76,20%	73,50%	75,20%	0,052	79,20%	63,80%	73,10%	
45,00%	0,041	0,081	0,031	80,20%	67,90%	75,40%	0,054	79,20%	63,80%	73,10%	

Tabla 5.3.2.5: Resultados obtenidos por tipologías utilizando los umbrales del nivel de nitritos de la Tabla 5.3.2.4 así como los umbrales proporcionados por la CHE

				Calidad pr	onosticada			% T	otal aciertos		
		Distinguien	do tipología	Sin distingu	ir tipologías	СН	E	Distinguiendo	Sin distinguir		
Tipología	Calidad							tipologias	tipologías	CHE	
F 8	Observada	Alta	Baja	Alta	Baja	Alta	Baja	1 8	1 0		
109	Alta	74,32%	25,68%	78,38%	21,62%	95,95%	4,05%	78,91%	78.91%	66,67%	
107	Baja	16,44%	83,56%	20,55%	79,45%	63,01%	36,99%	70,7170	70,9170	00,0770	
112	Alta	86,26%	13,74%	73,08%	26,92%	95,60%	4,40%	77,69%	70.66%	77,27%	
112	Baja	48,33%	51,67%	36,67%	63,33%	78,33%	21,67%	77,0770	70,0070	77,2770	
115	Alta	34,04%	65,96%	61,70%	38,30%	91,49%	8,51%	68,18%	70,00%	48,18%	
113	Baja	6,35%	93,65%	23,81%	76,19%	84,13%	15,87%	00,1070	70,0070	40,1070	
Total	Alta	75,25%	24,75%	72,61%	27,39%	95,05%	4,95%	75,95%	72,95%	67,74%	
Total	Total Baja	22,96%	77,04%	26,53%	73,47%	74,49%	25,51%	13,7370	12,7570	67,74%	

En la Tabla 5.3.2.3 se muestra el modelo seleccionado utilizando como variables independientes los indicadores de la tipología del río (denotados como TIP_x donde x es el número de la tipología) y sus interacciones con el logaritmo del nivel de nitritos (denotados como LNO2_x) y aplicando un procedimiento de selección de variables por eliminación hacia atrás tomando p-valor de entrada 0,01 y como p-valor de salida 0,02. Así mismo y, por razones comparativas, se muestra el modelo estimado utilizando como variables independientes una constante y dicho logaritmo, el cual no tiene en cuenta, por tanto, la información proporcionada por la tipología del río. Las estimaciones se han realizado utilizando, únicamente, las observaciones de las tipologías 109, 112 y 115 dado que, para el resto, los resultados obtenidos no fueron fiables debido al escaso tamaño muestral disponible en algunos de los grupos comparados.

Las estimaciones de los parámetros del modelo (ver Tabla 5.3.2.3) y del proceso de validación (ver Tabla 5.3.2.5) ponen de manifiesto que en los ríos de las tipologías 109, 112 y 115 el nivel de nitritos discrimina entre las muestras de agua de alta y baja calidad biológicas, siendo los coeficientes β estimados significativamente positivos.

Utilizando la expresión (4.2), el umbral para un riesgo 0 vendrá dado por la expresión:

$$Umbral_{p} = exp \left(\frac{log(\frac{p}{1-p}) - 3,020}{1,107} \right)$$

si no se distinguen tipologías y

$$Umbral_{p} = \exp \left[\frac{log\left(\frac{p}{1-p}\right) - 2,859}{0,956*I(Tip = 109) + 1,217*I(Tip = 112) + 0,881*I(Tip = 115)} \right]$$

si se distinguen tipologías, donde I(Tip=x) es la función indicador de la tipología x que vale 1 si el río tiene tipología x y 0 en otro caso. En ambos casos se detectará riesgo alto de baja calidad biológica del agua si el nivel de nitritos de ésta es mayor o igual que dicho umbral.

En la Tabla 5.3.2.4 se muestran los umbrales estimados para una red de valores del riesgo p, así como los porcentajes de éxito entre las muestras que cumplen los requisitos de calidad, entre las que no la cumplen y el porcentaje de éxitos totales

calculados utilizando las expresiones (4.5) a (4.7). Así, por ejemplo, si el nivel mediano de nitritos es superior a 0,045 mg/L NO2 el modelo estimado sin distinguir tipologías estima que existe un riesgo superior de al menos un 40% de que las aguas del río sean de baja calidad biológica. Distinguiendo tipologías este umbral cambia a 0,033 mg/L NO2 si el río es de la tipología 109; a 0,068 mg/L NO2 si es de tipología 112 y a 0,025 mg/L NO2 si es de la 115. Utilizando estos umbrales los porcentajes de éxito para cada uno de los dos procedimientos fueron, respectivamente, 72,60% y 75,20% entre las muestras que cumplen; 73,50% y 77% entre las que no cumplen y 72,90% y 76% en total.

Finalmente, en la Tabla 5.3.2.5 se muestran los resultados obtenidos por tipologías utilizando los umbrales anteriores (distinguiendo y sin distinguir tipologías) junto a los correspondientes al procedimiento utilizado por la CHE que clasifica el agua como de alta calidad si su nivel de nitritos es inferior a 0,15 mg/L NO2. Así, por ejemplo, en la tipología 109, los porcentaje de éxito en la muestras que cumplen los estándares de calidad fueron 74,32%, 78,38% y 95,95% utilizando umbrales distinguiendo por tipologías, sin distinguir y el procedimiento de la CHE, respectivamente. Estos porcentajes fueron 83,56%, 79,45% y 36,99% entre las que no cumplen dichos estándares.

Se observa, en primer lugar, que los límites proporcionados por la CHE son poco operativos al clasificar un 74,49% aguas de baja calidad como buenas. Por otro lado, aunque a nivel global el procedimiento que distingue tipologías obtiene mejores resultados, en términos de porcentajes de aciertos (75,95% frente a 72,95%), si analizamos por tipologías los porcentajes de aciertos en las muestras de alta y baja calidad se observa que están más equilibrados cuando los umbrales se fijan sin distinguir tipologías que cuando se distinguen, lo cual los hace menos fiables al no saber, en una situación real, en qué situación están las aguas antes de ser analizadas.

5.3.3. Umbrales de calidad biológica para los nitratos

De acuerdo con estudios realizados en proyectos anteriores se ha tomado g(X) =log(X) al mostrar el indicador analizado problemas serios de falta de normalidad por una elevada asimetría positiva.

Tabla 5.3.3.1: Datos ausentes y válidos del logaritmo del nivel de nitratos

por tipologías y nivel de calidad biológica de las aguas

¿Aguas de baja calidad biológica?	Tipología	Válidos		Perdidos		Total	
		Casos	Porcentaje	Casos	Porcentaje	Casos	Porcentaje
No	109	108	73,0%	40	27,0%	148	100,0%
	112	242	77,6%	70	22,4%	312	100,0%
	115	96	82,8%	20	17,2%	116	100,0%
	116	7	100,0%	0	,0%	7	100,0%
	117	23	95,8%	1	4,2%	24	100,0%
	126	263	74,1%	92	25,9%	355	100,0%
	127	102	65,0%	55	35,0%	157	100,0%
Si	109	105	65,6%	55	34,4%	160	100,0%
	112	88	59,9%	59	40,1%	147	100,0%
	115	116	74,4%	40	25,6%	156	100,0%
	116	13	81,3%	3	18,8%	16	100,0%
	117	84	86,6%	13	13,4%	97	100,0%
	126	30	54,5%	25	45,5%	55	100,0%
	127	8	50,0%	8	50,0%	16	100,0%
Total		1285	72,8%	481	27,2%	1766	100,0%

En la Tabla 5.3.3.1 se analiza el porcentaje de datos ausentes y válidos por tipologías y nivel de calidad biológica de las aguas. El porcentaje de datos ausentes oscila en torno a 27,2% llamando la atención el elevado porcentaje de datos ausentes en los ríos de las tipologías 126 y 127 en las muestras de baja calidad biológica (45,5% y 50%, respectivamente) lo cual hace que los resultados correspondientes a estas tipologías deban tomarse con las debidas precauciones.

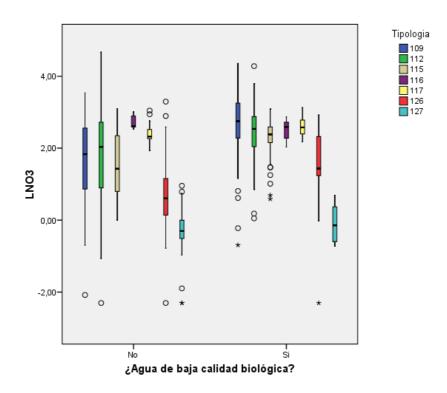


Figura 5.3.3.1: Diagrama de cajas del logaritmo del nivel de nitratos por tipologías y nivel de calidad biológica de las aguas

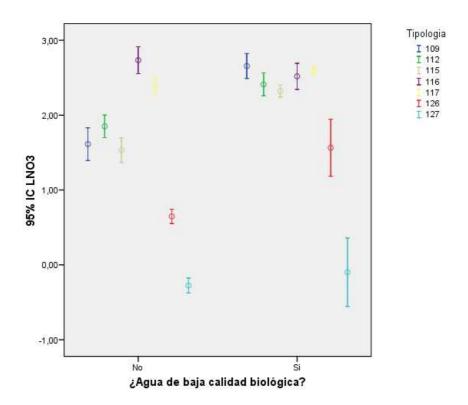


Figura 5.3.3.2: Barras de error de la media del logaritmo del nivel de nitratos por tipologías y nivel de calidad biológica de las aguas (nivel de confianza 95%)

En las Figuras 5.3.3.1 y 5.3.3.2 así como en la Tabla 5.3.3.2 se presentan los resultados del estudio comparativo del logaritmo del nivel de nitratos entre las aguas de baja y alta calidad biológica distinguiendo tipologías. Más concretamente se muestran sus diagramas de cajas (Figura 5.3.3.1) y las barras de error del 95% de confianza (Figura 5.3.3.2) así como sus valores medios y medianos (Tabla 5.3.3.2). Finalmente, se dan los resultados obtenidos al realizar contrastes de Mann-Whitney presentando, para cada tipología y en total, los valores de los rangos medios de las muestras de alta y baja calidad biológicas así como el pvalor del contraste (Tabla 5.3.3.2).

Se observa que, con la excepción de los ríos de tipología 116 y 127, la mediana del logaritmo del nivel de nitratos tiende a ser significativamente inferior en las aguas de alta calidad biológica (ver Tabla 5.3.3.2). En el resto de tipologías, con la única excepción de la 116, aunque dicho patrón se conserva, no se aprecian diferencias que sean estadísticamente significativas (ver Figura 5.3.3.2).

Tabla 5.3.3.2: Análisis descriptivo del logaritmo del nivel de nitratos por tipologías

		Casos			Media			Mediana		Error	típico de l	a media		Rangos p	romedio
	0 0	as de alidad?		¿Agu baja ca	as de didad?			s de baja idad?		0 0	s de baja idad?			de baja dad?	Pvalor Many Whitney
Tipología	No	Si	Total	No	Si	Total	No	Si	Total	No	Si	Total	No	Si	Mann-Whitney
109	108	105	213	1,61	2,66	2,13	1,83	2,75	2,41	0,11	0,08	0,08	78,25	136,58	0,000
112	242	88	330	1,85	2,41	2,00	2,03	2,54	2,16	0,08	0,08	0,06	152,65	200,84	0,000
115	96	116	212	1,53	2,32	1,96	1,43	2,38	2,24	0,08	0,04	0,05	74,11	133,31	0,000
116	7	13	20	2,73	2,52	2,59	2,61	2,59	2,61	0,07	0,08	0,06	13,29	9,00	0,135
117	23	84	107	2,39	2,59	2,55	2,32	2,58	2,55	0,06	0,03	0,03	35,46	59,08	0,001
126	263	30	293	0,65	1,57	0,74	0,61	1,44	0,69	0,05	0,19	0,05	137,59	229,50	0,000
127	102	8	110	-0,28	-0,10	-0,26	-0,30	-0,15	-0,30	0,05	0,19	0,05	54,99	62,06	0,545
Total	841	444	1285	1,17	2,38	1,59	1,06	2,49	1,89	0,04	0,04	0,03	510,93	893,16	0,000

Tabla 5.3.3.3: Modelos estimados para el logaritmo del nivel de nitratos distinguiendo y sin distinguir tipologías

	Dis	tinguiendo tipologí	ías	Sin	distinguir tipologí	as
Variables seleccionadas	β	Error Estándar	Pvalor	β	Error Estándar	Pvalor
Constante	-2,4767	0,2432	0,0000	-2,1740	0,2239	0,0000
LN03				0,8511	0,0944	0,0000
LNO3_109	1,1045	0,1123	0,0000			
LNO3_112	0,6491	0,1035	0,0000			
LNO3 115	1,3918	0,1322	0,0000			

Tabla 5.3.3.4: Umbrales estimados para el nivel de nitratos y validación predictiva de los mismos distinguiendo y sin distinguir tipologías (en negrita señalados los umbrales utilizados en el proceso de comparación por tipologías descrito en la Tabla 5.3.3.5)

	Uml	brales dis	stinguiendo tipologías		%Aciertos	Ī	Umbrales distinguiendo		%Aciertos	
Riesgo	109	112	115	Cumplen	No cumplen	Totales	tipologías	Cumplen	No cumplen	Totales
35,00%	5,38	17,49	3,80	64,80%	73,50%	68,30%	6,22	48,00%	87,10%	64,00%
36,00%	5,59	18,71	3,92	67,00%	71,80%	69,00%	6,54	49,80%	86,40%	64,80%
37,00%	5,82	20,00	4,04	68,20%	70,90%	69,30%	6,88	50,90%	83,80%	64,40%
38,00%	6,04	21,36	4,17	69,10%	69,60%	69,30%	7,24	53,10%	82,50%	65,20%
39,00%	6,28	22,79	4,30	70,40%	68,30%	69,50%	7,61	55,20%	80,60%	65,60%
40,00%	6,52	24,31	4,43	72,90%	66,70%	70,30%	7,99	56,70%	78,60%	65,70%
41,00%	6,77	25,91	4,56	73,30%	66,00%	70,30%	8,39	58,70%	76,70%	66,10%
42,00%	7,03	27,61	4,70	74,00%	65,70%	70,60%	8,80	61,00%	74,10%	66,40%
43,00%	7,30	29,41	4,84	75,00%	65,00%	71,00%	9,24	61,40%	71,50%	65,60%
44,00%	7,57	31,31	4,98	76,20%	64,40%	71,40%	9,69	63,70%	68,60%	65,70%
45,00%	7,85	33,33	5,13	77,10%	63,40%	71,50%	10,16	65,00%	62,80%	64,10%

Tabla 5.3.3.5: Resultados obtenidos por tipologías utilizando los umbrales del nivel de nitratos de la Tabla 5.3.3.4 así como los umbrales proporcionados por la CHE

				Calidad pr	onosticada			% T	otal aciertos	
		Distinguien	do tipología	Sin distingu	ir tipologías	СН	E	Distinguiendo	Sin distinguir	
Tipología	Calidad Observada	Alta	Baja	Alta	Baja	Alta	Baja	tipologias	tipologías	СНЕ
109	Alta	48,15%	51,85%	66,67%	33,33%	94,44%	5,56%	66,20%	69.48%	66,20%
107	Baja	15,24%	84,76%	27,62%	72,38%	62,86%	37,14%	00,2070	02,4070	00,2070
112	Alta	85,95%	14,05%	60,74%	39,26%	85,12%	14,88%	67.27%	60.00%	67,58%
112	Baja	84,09%	15,91%	42,05%	57,95%	80,68%	19,32%	07,2770	00,0070	07,5670
115	Alta	50,00%	50,00%	73,96%	26,04%	98,96%	1,04%	75,47%	65,09%	46,70%
113	Baja	3,45%	96,55%	42,24%	57,76%	96,55%	3,45%	75,4770	05,0970	40,7070
Total	Alta	69,06%	30,94%	65,02%	34,98%	90,36%	9,64%	69.27%	64.11%	61,32%
Total	Baja	30,42%	69,58%	37,22%	62,78%	80,58%	19,42%	07,2170	04,1170	01,3270

En la Tabla 5.3.3.3 se muestra el modelo seleccionado utilizando como variables independientes los indicadores de la tipología del río (denotados como TIP_x donde x es el número de la tipología) y sus interacciones con el logaritmo del nivel de nitratos (denotados como LNO3_x) y aplicando un procedimiento de selección de variables por eliminación hacia atrás tomando p-valor de entrada 0,01 y como p-valor de salida 0,02. Así mismo y, por razones comparativas, se muestra el modelo estimado utilizando como variables independientes una constante y dicho logaritmo, el cual no tiene en cuenta, por tanto, la información proporcionada por la tipología del río. Las estimaciones se han realizado utilizando, únicamente, las observaciones de las tipologías 109, 112 y 115 dado que, para el resto, los resultados obtenidos no fueron fiables debido al escaso tamaño muestral disponible en algunos de los grupos comparados.

Las estimaciones de los parámetros del modelo (ver Tabla 5.3.3.3) y del proceso de validación (ver Tabla 5.3.3.5) ponen de manifiesto que en los ríos de las tipologías 109, 112 y 115 el nivel de nitratos discrimina entre las muestras de agua de alta y baja calidad biológicas, siendo los coeficiente β estimados significativamente positivos.

Utilizando la expresión (4.2), el umbral para un riesgo 0 vendrá dado por la expresión:

$$Umbral_{p} = exp \left(\frac{log\left(\frac{p}{1-p}\right) + 2,17}{0,85} \right)$$

si no se distinguen tipologías y

$$Umbral_{p} = exp \left(\frac{log\left(\frac{p}{1-p}\right) + 2,48}{1,10*I(Tip = 109) + 0,65*I(Tip = 112) + 1,39*I(Tip = 115)} \right)$$

si se distinguen tipologías, donde I(Tip=x) es la función indicador de la tipología x que vale 1 si el río tiene tipología x y 0 en otro caso. En ambos casos se detectará riesgo alto de baja calidad biológica del agua si el nivel de nitratos de ésta es mayor o igual que dicho umbral.

En la Tabla 5.3.3.4 se muestran los umbrales estimados para una red de valores del riesgo p, así como los porcentajes de éxito entre las muestras que cumplen los

requisitos de calidad, entre las que no la cumplen y el porcentaje de éxitos totales calculados utilizando las expresiones (4.5) a (4.7). Así, por ejemplo, si el nivel mediano de nitratos es superior a 7,24 mg/L NO3 el modelo estimado sin distinguir tipologías estima que existe un riesgo superior de al menos un 38% de que las aguas del río sean de baja calidad biológica. Distinguiendo tipologías este umbral cambia a 6,04 mg/L NO3 si el río es de la tipología 109; 21,36 mg/L NO3 si es de tipología 112 y 4,17 mg/L NO3 si es de la 115. Utilizando estos umbrales los porcentajes de éxito para cada uno de los dos procedimientos fueron, respectivamente, 53,1% y 69,10% entre las muestras que cumplen; 82,50% y 69,60% entre las que no cumplen y 65,20% y 69,30% en total.

Finalmente, en la Tabla 5.3.3.5 se muestran los resultados obtenidos por tipologías utilizando los umbrales en negrita (distinguiendo y sin distinguir tipologías) junto a los correspondientes al procedimiento utilizado por la CHE que clasifica las aguas como de alta calidad si el nivel de los nitratos es inferior a 20 mg/L NO3. Así, por ejemplo, en la tipología 109, los porcentaje de éxito en la muestras que cumplen los estándares de calidad fueron 48,15%, 66,67% y 94,44% utilizando umbrales distinguiendo por tipologías, sin distinguir y el procedimiento de la CHE, respectivamente. Estos porcentajes fueron 84,76%, 72,38% y 37,14% entre las que no cumplen dichos estándares.

Se observa, en primer lugar, que los límites proporcionados por la CHE son poco operativos al clasificar un 80,58% aguas de baja calidad como buenas. Por otro lado, aunque a nivel global el procedimiento que distingue entre tipologías obtiene mejores resultados en términos de porcentajes de aciertos que el que no distingue (69,27% frente a 64,11%), si los analizamos por tipologías los porcentajes de aciertos en las muestras de alta y baja calidad están más equilibrados cuando los umbrales se fijan sin distinguir tipologías que cuando se distinguen, lo cual los hace menos fiables al no saber, en una situación real, en qué situación están las aguas antes de ser analizadas.

5.3.4. Umbrales de calidad biológica para los fosfatos

De acuerdo con estudios realizados en proyectos anteriores se ha tomado g(X) = log(X) al mostrar el indicador analizado problemas serios de falta de normalidad por una elevada asimetría positiva.

Tabla 5.3.4.1: Datos ausentes y válidos del logaritmo del nivel de fosfatos por tipologías y nivel de calidad biológica de las aguas

¿Aguas de baja Válidos Perdidos Total Tipología calidad biológica? Porcentaje **Casos Porcentaje Casos Casos** Porcentaje 109 102 68.9% 46 31.1% 148 100.0% 112 207 66,3% 105 33,7% 312 100,0% 115 90 77,6% 26 22,4% 116 100,0% No 116 100,0% .0% 100,0% 7 0 23 1 24 117 95,8% 4,2% 100,0% 231 34,9% 126 65,1% 124 355 100,0% 127 43,3% 89 56,7% 157 100,0% 68 109 93 58,1% 67 41,9% 160 100,0% 112 78 53,1% 69 46,9% 147 100,0% 115 114 73,1% 42 26,9% 156 100,0% Si 116 50,0% 50,0% 100,0% 8 8 16 117 83 14 97 85,6% 14,4% 100,0% 126 27 49,1% 28 50,9% 55 100,0% 127 3 18,8% 13 81,3% 16 100,0% 1134 632 1766 **Total** 64,2% 35,8% 100,0%

En la Tabla 5.3.4.1 se analiza el porcentaje de datos ausentes y válidos por tipologías y nivel de calidad biológica de las aguas. El porcentaje de datos ausentes oscila en torno a 35,8% llamando la atención los elevados porcentaje de datos ausentes en los ríos de la tipología 127 tanto en las muestras de baja calidad biológica (81,3%) como en las de alta (56,7%) así como el de muestras de baja calidad en los ríos de la tipología 116 (50,9%) todo lo cual, unido al escaso número de muestras en algunos de estos grupos hace que los resultados correspondientes a estas tipologías deban tomarse con las debidas precauciones.

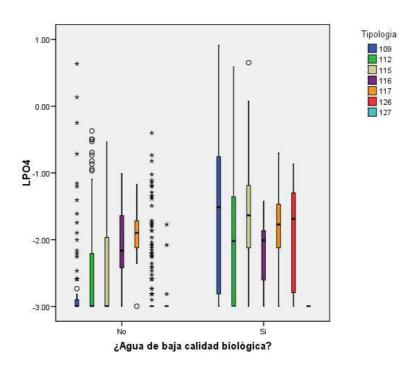


Figura 5.3.4.1: Diagrama de cajas del logaritmo del nivel de fosfatos por tipologías y nivel de calidad biológica de las aguas

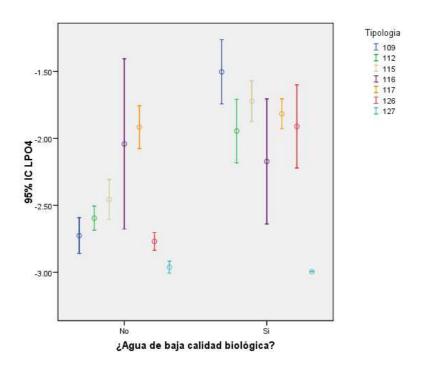


Figura 5.3.4.2: Barras de error de la media del logaritmo del nivel de fosfatos por tipologías y nivel de calidad biológica de las aguas (nivel de confianza 95%)

En las Figuras 5.3.4.1 y 5.3.4.2 así como en la Tabla 5.3.4.2. se presentan los resultados del estudio comparativo del logaritmo del nivel de fosfatos entre las aguas de

baja y alta calidad biológica distinguiendo tipologías. Más concretamente, se muestran sus diagramas de cajas (Figura 5.3.4.1) y las barras de error del 95% de confianza (Figura 5.3.4.2) así como sus valores medios y medianos (Tabla 5.3.4.2). Finalmente, se dan los resultados obtenidos al realizar contrastes de Mann-Whitney presentando, para cada tipología y en total, los valores de los rangos medios de las muestras de alta y baja calidad biológicas así como el pvalor del contraste (Tabla 5.3.4.2).

Se observa que, con la excepción de los ríos de tipologías 116 y 127, la media del logaritmo del nivel de fosfatos tiende a ser significativamente inferior en las aguas de alta calidad biológica (ver Tabla 5.3.4.2). En el resto de tipologías aunque dicho patrón se conserva, no se aprecian diferencias que sean estadísticamente significativas (ver Figura 5.3.4.2).

Tabla 5.3.4.2: Análisis descriptivo del logaritmo del nivel de fosfatos por tipologías

		Casos			Media			Mediana		Error	típico de l	a media		Rangos p	romedio
	0 0	as de alidad?		0 0	as de didad?			s de baja idad?		0 0	s de baja idad?			de baja lad?	Pvalor Many Whitney
Tipología	No	Si	Total	No	Si	Total	No	Si	Total	No	Si	Total	No	Si	Mann-Whitney
109	102	93	195	-2,73	-1,50	-2,14	-3,00	-1,51	-3,00	0,07	0,12	0,08	69,52	129,24	0,000
112	207	78	285	-2,60	-1,94	-2,42	-3,00	-2,02	-3,00	0,05	0,12	0,05	128,21	182,26	0,000
115	90	114	204	-2,46	-1,72	-2,05	-3,00	-1,64	-1,98	0,07	0,08	0,06	74,78	124,39	0,000
116	7	8	15	-2,04	-2,17	-2,11	-2,16	-2,01	-2,12	0,26	0,20	0,16	8,00	8,00	1,000
117	23	83	106	-1,92	-1,82	-1,84	-1,90	-1,77	-1,80	0,08	0,06	0,05	46,54	55,43	0,220
126	231	27	258	-2,77	-1,91	-2,68	-3,00	-1,69	-3,00	0,03	0,15	0,04	121,56	197,46	0,000
127	68	3	71	-2,96	-3,00	-2,96	-3,00	-3,00	-3,00	0,02	0,00	0,02	36,07	34,50	0,904
Total	728	406	1134	-2,66	-1,76	-2,34	-3,00	-1,76	-3,00	0,02	0,05	0,03	450,69	776,95	0,000

Tabla 5.3.4.3: Modelos estimados para el logaritmo del nivel de fosfatos distinguiendo y sin distinguir tipologías

	Dis	tinguiendo tipologí	ías	Sin	distinguir tipologí	as
Variables seleccionadas	β	Error Estándar	Pvalor	β	Error Estándar	Pvalor
Constante	3,2096	0,4241	0,0000	2,2996	0,2626	0,0000
LPO4				1,1852	0,1092	0,0000
TIP_112	-2,1236	0,6224	0,0006			
LPO4_109	1,6850	0,2040	0,0000			
LPO4_112	1,0271	0,2178	0,0000			
LPO4_115	1,5407	0,2118	0,0000			

Tabla 5.3.4.4: Umbrales estimados para el nivel de fosfatos y validación predictiva de los mismos distinguiendo y sin distinguir tipologías (en negrita señalados los umbrales utilizados en el proceso de comparación por tipologías descrito en la Tabla 5.3.4.5)

	Umbra	ales distii tipología	nguiendo as		%Aciertos	_	Umbrales sin distinguir		%Aciertos	
Riesgo	109	112	115	Cumplen	No cumplen	Totales	tipologías	Cumplen	No cumplen	Totales
30,00%	0,090	0,152	0,072	55,90%	80,40%	66,10%	0,070	67,70%	74,40%	70,50%
31,00%	0,093	0,159	0,074	55,90%	80,00%	65,90%	0,073	67,70%	74,40%	70,50%
32,00%	0,095	0,167	0,076	57,60%	78,60%	66,40%	0,076	71,40%	72,60%	71,90%
33,00%	0,098	0,174	0,079	58,10%	78,20%	66,50%	0,079	71,40%	72,60%	71,90%
34,00%	0,100	0,182	0,081	74,20%	69,80%	72,40%	0,082	72,40%	71,90%	72,20%
35,00%	0,103	0,190	0,083	74,90%	68,80%	72,40%	0,085	73,40%	70,90%	72,40%

Tabla 5.3.4.5: Resultados obtenidos por tipologías utilizando los umbrales del nivel de fosfatos de la Tabla 5.3.4.4 así como los umbrales proporcionados por la CHE

				Calidad pr	onosticada			% To	otal aciertos	
		Distinguieno	lo tipologías	Sin distingu	ir tipologías	СНІ	E	Distinguiendo	Sin distinguir	
Tipología	Calidad Observada	Alta	Baja	Alta	Baja	Alta	Baja	tipologías	tipologías	СНЕ
109	Alta	86,27%	13,73%	85,29%	14,71%	94,12%	5,88%	78,97%	78,97%	68,72%
103	Baja	29,03%	70,97%	27,96%	72,04%	59,14%	40,86%	70,9770	76,9770	06,7270
112	Alta	89,37%	10,63%	69,08%	30,92%	93,24%	6,76%	74,04%	67.37%	73,68%
112	Baja	66,67%	33,33%	37,18%	62,82%	78,21%	21,79%	74,0470	07,5770	73,0070
115	Alta	25,56%	74,44%	61,11%	38,89%	91,11%	8,89%	63,73%	71,57%	54,41%
113	Baja	6,14%	93,86%	20,18%	79,82%	74,56%	25,44%	03,73%	71,5770	34,4170
Total	Alta	74,19%	25,81%	71,43%	28,57%	92,98%	7,02%	72,37%	71.93%	66,52%
Total	Baja	30,18%	69,82%	27,37%	72,63%	70,53%	29,47%	12,3170	/1,9370	00,3270

En la Tabla 5.3.4.3 se muestra el modelo seleccionado utilizando como variables independientes los indicadores de la tipología del río (denotados como TIP_x donde x es el número de la tipología) y sus interacciones con el logaritmo del nivel de fosfatos (denotados como LPO4_x) y aplicando un procedimiento de selección de variables por eliminación hacia atrás tomando pvalor de entrada 0,01 y como pvalor de salida 0,02. Así mismo y, por razones comparativas, se muestra el modelo estimado utilizando como variables independientes una constante y dicho logaritmo, el cual no tiene en cuenta, por tanto, la información proporcionada por la tipología del río. Las estimaciones se han realizado utilizando, únicamente, las observaciones de las tipologías 109, 112 y 115 dado que, para el resto, los resultados obtenidos no fueron fiables debido al escaso tamaño muestral disponible en algunos de los grupos comparados.

Las estimaciones de los parámetros del modelo (ver Tabla 5.3.4.3) y del proceso de validación (ver Tabla 5.3.4.5) ponen de manifiesto que en los ríos de las tipologías 109, 112 y 115 el nivel de fosfatos discrimina entre las muestras de agua de alta y baja calidad, siendo los coeficientes β estimados significativamente positivos.

Utilizando la expresión (4.2), el umbral para un riesgo 0 vendrá dado por la expresión:

$$Umbral_p = exp \left(\frac{log(\frac{p}{1-p}) - 2,30}{1,19} \right)$$

si no se distinguen tipologías y

$$Umbral_{p} = exp \left(\frac{log \left(\frac{p}{1-p} \right) - 3,21 + 2,12 * I(Tip = 112)}{1,69 * I(Tip = 109) + 1,03 * I(Tip = 112) + 1,54 * I(Tip = 115)} \right)$$

si se distinguen tipologías, donde I(Tip=x) es la función indicador de la tipología x que vale 1 si el río tiene tipología x y 0 en otro caso. En ambos casos se detectará riesgo alto de baja calidad biológica del agua si el nivel de fosfatos de ésta es mayor o igual que dicho umbral.

En la Tabla 5.3.4.4 se muestran los umbrales estimados para una red de valores del riesgo p, así como los porcentajes de éxito entre las muestras que cumplen los

requisitos de calidad, entre las que no la cumplen y el porcentaje de éxitos totales calculados utilizando las expresiones (4.5) a (4.7). Así, por ejemplo, si el nivel mediano de fosfatos es superior a 0,082 mg/L PO4 el modelo estimado sin distinguir tipologías estima que existe un riesgo superior de al menos un 34% de que las aguas del río sean de baja calidad biológica. Distinguiendo tipologías este umbral cambia a 0,1 mg/L PO4 si el río es de la tipología 109; 0,182 mg/L PO4 si es de tipología 112 y 0,081 mg/L PO4 si es de la 115. Utilizando estos umbrales los porcentajes de éxito para cada uno de los dos procedimientos fueron, respectivamente, 72,40% y 74,20% entre las muestras que cumplen; 71,90% y 69,80% entre las que no cumplen y 72,20% y 72,40% en total.

Finalmente, en la Tabla 5.3.4.5 se muestran los resultados obtenidos por tipologías utilizando los umbrales en negrita (distinguiendo y sin distinguir tipologías) junto a los correspondientes al procedimiento utilizado por la CHE que clasifica las aguas como de alta calidad si el nivel de fosfatos es inferior a 0,30 mg/L PO4. Así, por ejemplo, en la tipología 109, los porcentaje de éxito en la muestras que cumplen los estándares de calidad fueron 86,27%, 85,29% y 94,12% utilizando umbrales distinguiendo por tipologías, sin distinguir y el procedimiento de la CHE, respectivamente. Estos porcentajes fueron 70,97%, 72,04% y 40,86% entre las que no cumplen dichos estándares.

Se observa, en primer lugar, que los límites proporcionados por la CHE son poco operativos al clasificar un 70,53% aguas de baja calidad como buenas. Por otro lado, aunque a nivel global no existen diferencias significativas en los resultados obtenidos, en términos de porcentajes de aciertos (72,37% frente a 71,93%), si los analizamos por tipologías los porcentajes de aciertos en las muestras de alta y baja calidad están más equilibrados cuando los umbrales se fijan sin distinguir tipologías que cuando se distinguen, lo cual los hace menos fiables al no saber, en una situación real, en qué situación están las aguas antes de ser analizadas.

5.3.5. Umbrales de calidad biológica para el fósforo total

De acuerdo con estudios realizados en proyectos anteriores se ha tomado g(X) =log(X) al mostrar el indicador analizado problemas serios de falta de normalidad por una elevada asimetría positiva.

Tabla 5.3.5.1: Datos ausentes y válidos del logaritmo del nivel de fósforo

total por tipologías y nivel de calidad biológica de las aguas

¿Aguas de baja			álidos		erdidos		Fotal
calidad biológica?	Tipología	Casos	Porcentaje	Casos	Porcentaje	Casos	Porcentaje
	109	74	50,0%	74	50,0%	148	100,0%
	112	186	59,6%	126	40,4%	312	100,0%
	115	51	44,0%	65	56,0%	116	100,0%
No	116	3	42,9%	4	57,1%	7	100,0%
	117	14	58,3%	10	41,7%	24	100,0%
	126	184	51,8%	171	48,2%	355	100,0%
	127	93	59,2%	64	40,8%	157	100,0%
	109	79	49,4%	81	50,6%	160	100,0%
	112	63	42,9%	84	57,1%	147	100,0%
	115	73	46,8%	83	53,2%	156	100,0%
Si	116	11	68,8%	5	31,3%	16	100,0%
	117	39	40,2%	58	59,8%	97	100,0%
	126	18	32,7%	37	67,3%	55	100,0%
	127	7	43,8%	9	56,3%	16	100,0%
Total		895	50,68%	871	49,32%	1766	100,0%

En la Tabla 5.3.5.1 se analiza el porcentaje de datos ausentes y válidos por tipologías y nivel de calidad biológica de las aguas. El porcentaje de datos ausentes oscila en torno a 49,32% llamando la atención el elevado porcentaje de datos ausentes en los ríos de la tipología 126 en las muestras de baja calidad biológica (67,3%) lo cual hace que los resultados correspondientes a esta tipología deban tomarse con las debidas precauciones.

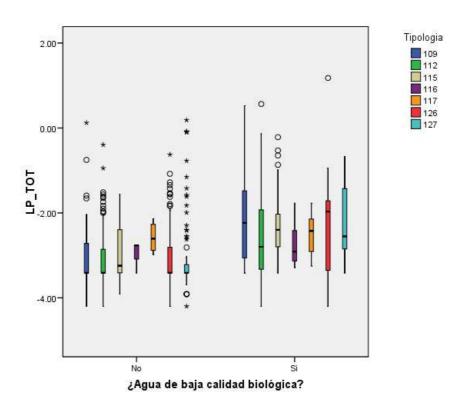


Figura 5.3.5.1: Diagrama de cajas del logaritmo del nivel de fósforo total por tipologías y nivel de calidad biológica de las aguas

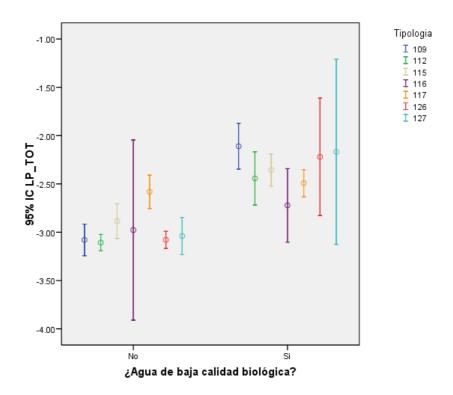


Figura 5.3.5.2: Barras de error de la media del logaritmo del nivel de fósforo total por tipologías y nivel de calidad biológica de las aguas (nivel de confianza 95%)

En las Figuras 5.3.5.1 y 5.3.5.2 así como en la Tabla 5.3.5.2. se presentan los resultados del estudio comparativo del logaritmo del nivel de fósforo total entre las aguas de baja y alta calidad biológica distinguiendo tipologías. Más concretamente se muestran sus diagramas de cajas (Figura 5.3.5.1) y las barras de error del 95% de confianza (Figura 5.3.5.2) así como sus valores medios y medianos (Tabla 5.3.5.2). Finalmente, se dan los resultados obtenidos al realizar contrastes de Mann-Whitney presentando, para cada tipología y en total, los valores de los rangos medios de las muestras de alta y baja calidad biológicas así como el pvalor del contraste (Tabla 5.3.5.2).

Se observa que, con la excepción de los ríos de tipologías 116 y 117, la mediana del logaritmo del nivel de fósforo total tiende a ser significativamente inferior en las aguas de alta calidad biológica (ver Tabla 5.3.5.2). En el resto de tipologías aunque dicho patrón se conserva no se aprecian diferencias que sean estadísticamente significativas (ver Figura 5.3.5.2).

Tabla 5.3.5.2: Análisis descriptivo del logaritmo del nivel de fósforo total por tipologías

		Casos			Media			Mediana		Error	típico de l	a media		Rangos pr	romedio
	• 0	as de alidad?			as de didad?			s de baja idad?			s de baja idad?		Aguas; calio	de baja lad?	Pvalor
Tipología	No	Si	Total	No	Si	Total	No	Si	Total	No	Si	Total	No	Si	Mann-Whitney
109	74	79	153	-3,08	-2,11	-2,58	-3,41	-2,23	-2,94	0,08	0,12	0,08	53,58	98,94	0,000
112	186	63	249	-3,11	-2,44	-2,94	-3,41	-2,80	-3,35	0,04	0,14	0,05	112,08	163,14	0,000
115	51	73	124	-2,89	-2,36	-2,57	-3,24	-2,40	-2,48	0,09	0,08	0,07	46,64	73,58	0,000
116	3	11	14	-2,98	-2,72	-2,78	-2,76	-2,91	-2,86	0,22	0,17	0,14	7,33	7,55	1,000
117	14	39	53	-2,58	-2,49	-2,52	-2,61	-2,42	-2,50	0,08	0,07	0,06	25,75	27,45	0,724
126	184	18	202	-3,08	-2,22	-3,00	-3,41	-1,97	-3,41	0,04	0,29	0,05	96,63	151,25	0,000
127	93	7	100	-3,04	-2,17	-2,98	-3,41	-2,55	-3,41	0,10	0,39	0,10	48,43	78,00	0,004
Total	605	290	895	-3,05	-2,33	-2,82	-3,41	-2,41	-3,21	0,03	0,05	0,03	369,18	612,44	0,000

Tabla 5.3.5.3: Modelos estimados para el logaritmo del nivel de fósforo total distinguiendo y sin distinguir tipologías

	Dis	tinguiendo tipologi	ías	Sir	n distinguir tipologí	as
Variables seleccionadas	β	Error Estándar	Pvalor	β	Error Estándar	Pvalor
Constante	2,8333	0,4028	0,0000	3,0225	0,4001	0,0000
LP_TOT				1,2361	0,1394	0,0000
LP_TOT_109	1,0602	0,1488	0,0000			
LP_TOT_112	1,3660	0,1457	0,0000			
LP_TOT_115	0,9561	0,1586	0,0000			

Tabla 5.3.5.4: Umbrales para el nivel de fósforo total y validación predictiva de los mismos distinguiendo y sin distinguir tipologías (en negrita señalados los umbrales utilizados en el proceso de comparación por tipologías descrito en la Tabla 5.3.5.5)

	Umbra	ales disti tipología	nguiendo as		%Aciertos	_	Umbrales sin distinguir		%Aciertos	
Riesgo	109	112	115	Cumplen	No cumplen	Totales	tipologías	Cumplen	No cumplen	Totales
35,00%	0,039	0,027	0,080	64,60%	75,30%	69,00%	0,053	69,80%	70,70%	70,20%
36,00%	0,040	0,028	0,082	66,20%	74,40%	69,60%	0,054	70,10%	69,30%	69,80%
37,00%	0,042	0,030	0,085	66,90%	74,00%	69,80%	0,056	71,70%	68,40%	70,30%
38,00%	0,044	0,031	0,088	67,20%	74,00%	70,00%	0,058	72,00%	66,50%	69,80%
39,00%	0,045	0,032	0,091	71,10%	73,00%	71,90%	0,060	73,30%	65,10%	70,00%
40,00%	0,047	0,034	0,093	79,10%	70,20%	75,50%	0,062	74,00%	62,80%	69,40%

Tabla 5.3.5.5: Resultados obtenidos por tipologías utilizando los umbrales del nivel de fósforo total de la Tabla 5.3.5.4 así como los umbrales proporcionados por la CHE

		Calidad pronosticada						% Total aciertos			
		Distinguiendo tipologías		Sin distinguir tipologías		СНЕ		Distinguiendo	Sin distinguir		
Tipología	Calidad Observada	Alta	Baja	Alta	Baja	Alta	Baja	tipologías	tipologías	СНЕ	
109	Alta	70,27%	29,73%	72,97%	27,03%	93,24%	6,76%	73,20%	72,55%	68,63%	
	Baja	24,05%	75,95%	27,85%	72,15%	54,43%	45,57%	73,2070			
112	Alta	89,78%	10,22%	73,12%	26,88%	91,94%	8,06%	76,71%	69,48%	76,71%	
	Baja	61,90%	38,10%	41,27%	58,73%	68,25%	31,75%	70,7170			
115	Alta	3,92%	96,08%	52,94%	47,06%	84,31%	15,69%	60,48%	68,55%	54,03%	
	Baja	0,00%	100,00%	20,55%	79,45%	67,12%	32,88%	00,4070			
Total -	Alta	71,06%	28,94%	69,77%	30,23%	91,00%	9,00%	71,86%	70,15%	69,01%	
	Baja	26,98%	73,02%	29,30%	70,70%	62,79%	37,21%	/1,0070			

En la Tabla 5.3.5.3 se muestra el modelo seleccionado utilizando como variables independientes los indicadores de la tipología del río (denotados como TIP_x donde x es el número de la tipología) y sus interacciones con el logaritmo del nivel de fósforo total (denotados como LP_TOT_x) y aplicando un procedimiento de selección de variables por eliminación hacia atrás tomando pvalor de entrada 0,01 y como pvalor de salida 0,02. Así mismo y, por razones comparativas, se muestra el modelo estimado utilizando como variables independientes una constante y dicho logaritmo, el cual no tiene en cuenta, por tanto, la información proporcionada por la tipología del río. Las estimaciones se han realizado utilizando, únicamente, las observaciones de las tipologías 109, 112 y 115 dado que, para el resto, los resultados obtenidos no fueron fiables debido al escaso tamaño muestral disponible en algunos de los grupos comparados.

Las estimaciones de los parámetros del modelo (ver Tabla 5.3.5.3) y del proceso de validación (ver Tabla 5.3.5.5) ponen de manifiesto que en los ríos de las tipologías 109, 112 y 115 el nivel de fósforo total discrimina significativamente entre las muestras de agua de alta y baja calidad biológicas, siendo los coeficientes β estimados significativamente positivos.

Utilizando la expresión (4.2), el umbral para un riesgo 0 vendrá dado por la expresión:

$$Umbral_p = exp \left(\frac{log\left(\frac{p}{1-p}\right) - 3,02}{1,24} \right)$$

si no se distinguen tipologías y

$$Umbral_{p} = \frac{log\bigg(\frac{p}{1-p}\bigg) - 2,83}{1,06*I(Tip = 109) + 1,37*I(Tip = 112) + 0,96*I(Tip = 115)}$$

si se distinguen tipologías, donde I(Tip=x) es la función indicador de la tipología x que vale 1 si el río tiene tipología x y 0 en otro caso. En ambos casos se detectará riesgo alto de baja calidad biológica del agua si el nivel de fósforo total de ésta es mayor o igual que dicho umbral.

En la Tabla 5.3.5.4 se muestran los umbrales estimados para una red de valores del riesgo p, así como los porcentajes de éxito entre las muestras que cumplen los requisitos de calidad, entre las que no la cumplen y el porcentaje de éxitos totales calculados utilizando las expresiones (4.5) a (4.7). Así, por ejemplo, si el nivel mediano de fósforo total es superior a 0,060 mg/L P el modelo estimado sin distinguir tipologías estima que existe un riesgo superior de al menos un 39% de que las aguas del río sean de baja calidad biológica. Distinguiendo tipologías este umbral cambia a 0,045 mg/L P si el río es de la tipología 109, 0,032 mg/L P si es de tipología 112 y 0,091 mg/L P si es de la 115. Utilizando estos umbrales los porcentajes de éxito para cada uno de los dos procedimientos fueron, respectivamente, 73,30% y 71,10% entre las muestras que cumplen; 65,10% y 73% entre las que no cumplen y 70,00% y 71,90% en total.

Finalmente, en la Tabla 5.3.5.5 se muestran los resultados obtenidos por tipologías utilizando los umbrales en negrita (distinguiendo y sin distinguir tipologías) junto a los correspondientes al procedimiento utilizado por la CHE el cual clasifica el agua como de alta calidad si su nivel de fósforo total es inferior a 0,12 mg/L P. Así, por ejemplo, en la tipología 109, los porcentaje de éxito en la muestras que cumplen los estándares de calidad fueron 70,27%, 72,97% y 93,24% utilizando umbrales distinguiendo por tipologías, sin distinguir y el procedimiento de la CHE, respectivamente. Estos porcentajes fueron 75,95%, 72,15% y 45,57% entre las que no cumplen dichos estándares.

Se observa, en primer lugar, que los límites proporcionados por la CHE son poco operativos al clasificar un 62,79% aguas de baja calidad como buenas. Por otro lado, aunque a nivel global el procedimiento que distingue entre tipologías obtiene mejores resultados que el que no, en términos de porcentajes de aciertos (71,86% frente a 70,15%), si analizamos por tipologías los porcentajes de aciertos en las muestras de alta y baja calidad están más equilibrados cuando los umbrales se fijan sin distinguir tipologías que cuando se distinguen, lo cual los hace menos fiables al no saber, en una situación real, en qué situación están las aguas antes de ser analizadas.

6. CONCLUSIONES

En este trabajo se ha llevado a cabo un proceso estadístico de estimación de umbrales para un conjunto de indicadores físico-químicos habitualmente utilizados por la CHE para determinar el estado de las masas de agua del tipo de río según la DMA en la cuenca del Ebro. El procedimiento seguido ha tenido en cuenta la tipología de la masa de agua, definida según la IPH, de la que se ha extraído la muestra y se ha analizado, en particular, si el tener en cuenta dicha información mejora significativamente el proceso de determinación del estado de la masa de agua respecto al procedimiento seguido habitualmente por la CHE. Así mismo, la determinación del estado biológico de cada muestra analizada se ha llevado a cabo a partir de los valores de los indicadores IBMWP e IPS, de manera que una muestra de agua se ha considerado de "baja calidad" (estado según los indicadores biológicos inferior a bueno) si al menos uno de dichos indicadores presenta un estado menor que bueno según los requisitos establecidos por la CHE.

Los umbrales se han determinado utilizando, para cada indicador, modelos de regresión logística binaria así como procedimientos de selección de variables que tienen en cuenta la tipología del río. Los niveles de riesgo se han tomado procurando que los porcentajes de éxitos totales, tanto en muestras de "alta calidad" como de "baja calidad", fueran lo más elevados y similares posible, buscando, de esta forma, un equilibrio en ambos casos para el comportamiento del procedimiento de clasificación.

En la Tabla 6.1 se exponen, de forma resumida, los resultados obtenidos para cada indicador y cada tipología presentando, por un lado, las estimaciones de los umbrales y, por otro, las de los porcentajes de aciertos tanto en las muestras de agua de "alta calidad" como en las de "baja calidad" según los parámetros biológicos.

Las conclusiones extraídas del presente estudio son:

1) No se han podido estimar umbrales para los ríos de las **tipologías 111** (ríos de montaña silícea), **116** (ríos del eje mediterráneo-continental mineralizado) y **127** (ríos de alta montaña). En el caso de las tipologías 111 y 127 debido a que la mayor parte de las muestras disponibles eran de alta calidad (en el caso de la tipología 111 todas las muestras) imposibilitando llevar a cabo el proceso de discriminación estadístico que exige tener un número mínimo de muestras de

- ambos tipos. En el caso de la tipología 116 el número total de muestras resultó demasiado bajo para permitir este estudio.
- 2) Con la única excepción del indicador pH, tener en cuenta la tipología no mejora sustancialmente los resultados obtenidos utilizando un umbral común para todas ellas. Esta afirmación se puede realizar puesto que el procedimiento que distingue tipologías muestra un comportamiento mucho más desequilibrado en lo que al porcentaje de éxitos se refiere tendiendo, en muchos casos, a clasificar las muestras siguiendo, en mayor o menor grado, la regla de la mayoría. La posible causa podríamos encontrarla en unos tamaños muestrales no muy elevados y, en general, muy desequilibrados en cuanto a la composición por grupos se refiere.
- 3) En los ríos de las tipologías 117 (ríos de grandes ejes en ambiente mediterráneo) y 126 (ríos de montaña húmeda calcárea) tan sólo se calcularon umbrales para los indicadores DQO (demanda química de oxígeno) y NH4 (nivel de amonio total) dado que para el resto de los indicadores la potencia discriminante fue muy escasa clasificando las muestras siguiendo la regla de la mayoría, es decir, todas las muestras de agua de ríos 117 de baja calidad y todas las de ríos de tipología 126 de buena calidad.
- 4) Los porcentajes de éxito de los umbrales son estadísticamente significativos oscilando en torno a un 68,52% en el caso de las muestras de alta calidad y un 62,82% en las muestras de baja calidad. Si distinguimos por indicadores, los mejores resultados corresponden a los **nitritos** y a los **fosfatos** con porcentajes de éxitos muy equilibrados que oscilan en torno a un 71.5%.
- 5) Los procedimientos de clasificación del estado según los parámetros físicoquímicos utilizados por la CHE tienden a ser muy permisivos clasificando la
 mayor parte de las muestras como de alta calidad, provocando un
 comportamiento muy desequilibrado en cuanto al porcentaje de aciertos. Este
 valor es obviamente muy elevado en las muestras de alta calidad pero muy
 pequeño en las de baja calidad, lo cual no los haría demasiado recomendables si
 se quisiese calcular el estado de la masa solamente a partir de los parámetros
 físico- químicos.

6) Conviene hacer notar, finalmente, que el **no cumplimiento de los umbrales propuestos** debería utilizarse sólo como **signo de un posible problema** de baja calidad en las aguas, pero para confirmarlo necesitaría realizarse un examen más a fondo del estado del río mediante indicadores biológicos.

En este estudio el proceso de determinación de umbrales se ha realizado para cada indicador por separado, no obstante, sería interesante llevar a cabo procedimientos de determinación de umbrales simultáneos utilizando, por ejemplo, técnicas estadísticas de construcción de árboles de decisión. Este planteamiento queda propuesta para una futura línea de investigación.

.

Tabla 6.1. Umbrales recomendados por tipologías y porcentaje de aciertos estimados en cada una de ellas

		Indicador Físico-Químico								
Tipología	Regla de decisión y % aciertos	pН	Cond20 (µS/cm)	O2 (mg/L)	DQO (mg/L)	NH4 (mg/L)	NO2 (mg/L)	NO3 (mg/L)	PO4 (mg/L)	PTOT (mg/L)
109	Agua de baja calidad si	<8,27	>703,45	<9,50	>5,07	>0,075	>0,045	>10,16	>0,079	PTOT>0,053
	% Aciertos Baja Calidad	66,38%	56,90%	55,36%	82,05%	60,19%	78,38%	66,67%	85,29%	72,97%
	% Aciertos Alta Calidad	52,71%	89,92%	66,93%	53,49%	53,33%	79,45%	72,38%	72,04%	72,15%
112	Agua de baja calidad si	<7,85	>703,45	<9,50	>5,07	>0,075	>0,045	>10,16	>0,079	PTOT>0,053
	% Aciertos Baja Calidad	69,17%	69,55%	66,28%	85,71%	66,93%	73,08%	60,74%	69,08%	73,12%
	% Aciertos Alta Calidad	47,41%	55,17%	50.00%	34,78%	46,59%	63,33%	57,95%	62,82%	58,73%
115	Agua de baja calidad si	<8,33	>703,45	<9,50	>5,07	>0,075	>0,045	>10,16	>0,079	PTOT>0,053
	% Aciertos Baja Calidad	68,52%	75,93%	57,01%	79,03%	50,00%	61,70%	73,96%	61,11%	52,94%
	% Aciertos Alta Calidad	65,94%	56,52%	58,21%	61.00%	58,33%	76,19%	57,76%	79,82%	79,45%
117	Agua de baja calidad si				>5,07	>0,075				
	% Aciertos Baja Calidad				66,67%	47,83%				
	% Aciertos Alta Calidad				70,18%	66,67%				
126	Agua de baja calidad si				>5,07	>0,075				
	% Aciertos Baja Calidad				85,34%	71,38%				
	% Aciertos Alta Calidad				84.00%	73,33%				